文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于中风后认知障碍预测的多模态动态分层聚类模型

Multimodal dynamic hierarchical clustering model for post-stroke cognitive impairment prediction.

作者信息

Bai Chen, Li Tan, Zheng Yanyan, Yuan Gang, Zheng Jian, Zhao Hui

机构信息

Neurology Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, 32500, China.

Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou , Jiangsu, 215163, China.

出版信息

Vis Comput Ind Biomed Art. 2025 Sep 1;8(1):20. doi: 10.1186/s42492-025-00202-0.


DOI:10.1186/s42492-025-00202-0
PMID:40889044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12401840/
Abstract

Post-stroke cognitive impairment (PSCI) is a common and debilitating consequence of stroke that often arises from complex interactions between diverse brain alterations. The accurate early prediction of PSCI is critical for guiding personalized interventions. However, existing methods often struggle to capture complex structural disruptions and integrate multimodal information effectively. This study proposes the multimodal dynamic hierarchical clustering network (MDHCNet), a graph neural network designed for accurate and interpretable PSCI prediction. MDHCNet constructs brain graphs from diffusion-weighted imaging, magnetic resonance angiography, and T1- and T2-weighted images and integrates them with clinical features using a hierarchical cross-modal fusion module. Experimental results using a real-world stroke cohort demonstrated that MDHCNet consistently outperformed deep learning baselines. Ablation studies validated the benefits of multimodal fusion, while saliency-based interpretation highlighted discriminative brain regions associated with cognitive decline. These findings suggest that MDHCNet is an effective and explainable tool for early PSCI prediction, with the potential to support individualized clinical decision-making in stroke rehabilitation.

摘要

中风后认知障碍(PSCI)是中风常见且使人衰弱的后果,通常源于多种脑改变之间的复杂相互作用。PSCI的准确早期预测对于指导个性化干预至关重要。然而,现有方法往往难以捕捉复杂的结构破坏并有效整合多模态信息。本研究提出了多模态动态分层聚类网络(MDHCNet),这是一种为准确且可解释的PSCI预测而设计的图神经网络。MDHCNet从扩散加权成像、磁共振血管造影以及T1加权和T2加权图像构建脑图,并使用分层跨模态融合模块将它们与临床特征整合。使用真实世界中风队列的实验结果表明,MDHCNet始终优于深度学习基线。消融研究验证了多模态融合的益处,而基于显著性的解释突出了与认知衰退相关的判别性脑区。这些发现表明,MDHCNet是早期PSCI预测的有效且可解释的工具,具有支持中风康复中个性化临床决策的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/d8056520e98f/42492_2025_202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/cf367e0c3b88/42492_2025_202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/b78c4f848695/42492_2025_202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/4c11a1373170/42492_2025_202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/68ede7691649/42492_2025_202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/d8056520e98f/42492_2025_202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/cf367e0c3b88/42492_2025_202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/b78c4f848695/42492_2025_202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/4c11a1373170/42492_2025_202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/68ede7691649/42492_2025_202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e06/12401840/d8056520e98f/42492_2025_202_Fig5_HTML.jpg

相似文献

[1]
Multimodal dynamic hierarchical clustering model for post-stroke cognitive impairment prediction.

Vis Comput Ind Biomed Art. 2025-9-1

[2]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[3]
Development and Validation of a Brain Aging Biomarker in Middle-Aged and Older Adults: Deep Learning Approach.

JMIR Aging. 2025-8-1

[4]
Short-Term Memory Impairment

2025-1

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[7]
Imaging-genomic spatial-modality attentive fusion for studying neuropsychiatric disorders.

Hum Brain Mapp. 2024-12-1

[8]
Prediction of NIHSS Scores and Acute Ischemic Stroke Severity Using a Cross-attention Vision Transformer Model with Multimodal MRI.

Acad Radiol. 2025-9

[9]
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.

Acad Radiol. 2025-2

[10]
Fingerprint-enhanced hierarchical molecular graph neural networks for property prediction.

J Pharm Anal. 2025-6

本文引用的文献

[1]
A deep-learning model for predicting post-stroke cognitive impairment based on brain network damage.

Quant Imaging Med Surg. 2025-5-1

[2]
Potential Biomarkers of Post-stroke Cognitive Impairment in Chinese Population: a Systematic Review and Meta-Analysis.

Mol Neurobiol. 2025-3-4

[3]
Contrastive Graph Pooling for Explainable Classification of Brain Networks.

IEEE Trans Med Imaging. 2024-9

[4]
Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration.

IEEE Trans Neural Netw Learn Syst. 2025-2

[5]
Regional white matter hyperintensity volume predicts persistent cognitive impairment in acute lacunar infarct patients.

Front Neurol. 2023-10-10

[6]
Machine learning-based prediction of post-stroke cognitive status using electroencephalography-derived brain network attributes.

Front Aging Neurosci. 2023-9-28

[7]
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

Alzheimers Res Ther. 2023-8-31

[8]
Classification of Brain Disorders in rs-fMRI via Local-to-Global Graph Neural Networks.

IEEE Trans Med Imaging. 2023-2

[9]
Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke.

Korean J Radiol. 2022-8

[10]
Post-Stroke Cognitive Impairment and Dementia.

Circ Res. 2022-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索