Bai Chen, Li Tan, Zheng Yanyan, Yuan Gang, Zheng Jian, Zhao Hui
Neurology Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, 32500, China.
Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou , Jiangsu, 215163, China.
Vis Comput Ind Biomed Art. 2025 Sep 1;8(1):20. doi: 10.1186/s42492-025-00202-0.
Post-stroke cognitive impairment (PSCI) is a common and debilitating consequence of stroke that often arises from complex interactions between diverse brain alterations. The accurate early prediction of PSCI is critical for guiding personalized interventions. However, existing methods often struggle to capture complex structural disruptions and integrate multimodal information effectively. This study proposes the multimodal dynamic hierarchical clustering network (MDHCNet), a graph neural network designed for accurate and interpretable PSCI prediction. MDHCNet constructs brain graphs from diffusion-weighted imaging, magnetic resonance angiography, and T1- and T2-weighted images and integrates them with clinical features using a hierarchical cross-modal fusion module. Experimental results using a real-world stroke cohort demonstrated that MDHCNet consistently outperformed deep learning baselines. Ablation studies validated the benefits of multimodal fusion, while saliency-based interpretation highlighted discriminative brain regions associated with cognitive decline. These findings suggest that MDHCNet is an effective and explainable tool for early PSCI prediction, with the potential to support individualized clinical decision-making in stroke rehabilitation.
中风后认知障碍(PSCI)是中风常见且使人衰弱的后果,通常源于多种脑改变之间的复杂相互作用。PSCI的准确早期预测对于指导个性化干预至关重要。然而,现有方法往往难以捕捉复杂的结构破坏并有效整合多模态信息。本研究提出了多模态动态分层聚类网络(MDHCNet),这是一种为准确且可解释的PSCI预测而设计的图神经网络。MDHCNet从扩散加权成像、磁共振血管造影以及T1加权和T2加权图像构建脑图,并使用分层跨模态融合模块将它们与临床特征整合。使用真实世界中风队列的实验结果表明,MDHCNet始终优于深度学习基线。消融研究验证了多模态融合的益处,而基于显著性的解释突出了与认知衰退相关的判别性脑区。这些发现表明,MDHCNet是早期PSCI预测的有效且可解释的工具,具有支持中风康复中个性化临床决策的潜力。
Vis Comput Ind Biomed Art. 2025-9-1
J Prev Alzheimers Dis. 2025-5
2025-1
J Med Imaging (Bellingham). 2025-3
Hum Brain Mapp. 2024-12-1
Quant Imaging Med Surg. 2025-5-1
IEEE Trans Med Imaging. 2024-9
IEEE Trans Neural Netw Learn Syst. 2025-2
Alzheimers Res Ther. 2023-8-31
IEEE Trans Med Imaging. 2023-2
Korean J Radiol. 2022-8
Circ Res. 2022-4-15