Suppr超能文献

支持向量机回归用于预测玉米杂交种性能。

Support vector machine regression for the prediction of maize hybrid performance.

作者信息

Maenhout S, De Baets B, Haesaert G, Van Bockstaele E

机构信息

Department of Plant Production, University College Ghent, Voskenslaan 270, Gent 9000, Belgium.

出版信息

Theor Appl Genet. 2007 Nov;115(7):1003-13. doi: 10.1007/s00122-007-0627-9. Epub 2007 Sep 6.

Abstract

Accurate prediction of the phenotypical performance of untested single-cross hybrids allows for a faster genetic progress of the breeding pool at a reduced cost. We propose a prediction method based on epsilon-insensitive support vector machine regression (epsilon-SVR). A brief overview of the theoretical background of this fairly new technique and the use of specific kernel functions based on commonly applied genetic similarity measures for dominant and co-dominant markers are presented. These different marker types can be integrated into a single regression model by means of simple kernel operations. Field trial data from the grain maize breeding programme of the private company RAGT R2n are used to assess the predictive capabilities of the proposed methodology. Prediction accuracies are compared to those of one of today's best performing prediction methods based on best linear unbiased prediction. Results on our data indicate that both methods match each other's prediction accuracies for several combinations of marker types and traits. The epsilon-SVR framework, however, allows for a greater flexibility in combining different kinds of predictor variables.

摘要

准确预测未经测试的单交杂种的表型表现,能够以降低的成本加快育种群体的遗传进展。我们提出了一种基于ε-不敏感支持向量机回归(ε-SVR)的预测方法。本文简要概述了这项相当新的技术的理论背景,以及基于显性和共显性标记的常用遗传相似性度量使用特定核函数的情况。通过简单的核操作,可以将这些不同的标记类型整合到单个回归模型中。来自私营公司RAGT R2n的谷物玉米育种计划的田间试验数据用于评估所提出方法的预测能力。将预测准确性与基于最佳线性无偏预测的当今最佳性能预测方法之一进行比较。我们的数据结果表明,对于标记类型和性状的几种组合,两种方法的预测准确性相当。然而,ε-SVR框架在组合不同类型的预测变量方面具有更大的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验