Suppr超能文献

商业猪基因组预测准确性优化的比较研究

A Comparative Study of Optimizing Genomic Prediction Accuracy in Commercial Pigs.

作者信息

Chen Xiaojian, Liu Yiyi, Zhang Yuling, Zhuang Zhanwei, Huang Jinyan, Luan Menghao, Zhao Xiang, Dong Linsong, Ye Jian, Yang Ming, Zheng Enqin, Cai Gengyuan, Yang Jie, Wu Zhenfang, Liu Langqing

机构信息

National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 510642, China.

出版信息

Animals (Basel). 2025 Mar 27;15(7):966. doi: 10.3390/ani15070966.

Abstract

Genomic prediction (GP), which uses genome-wide markers to estimate breeding values, is a crucial tool for accelerating genetic progress in livestock and plant breeding. The accuracy of GP depends on several factors, including the statistical model, marker density, and cross-validation strategy. This study evaluated these factors to optimize GP accuracy for eight economically important carcass and body traits in a Duroc × (Landrace × Yorkshire) (DLY) pig population. This study used 50 K SNP chip data from 1494 DLY pigs, which were imputed to the whole genome sequence (WGS) level. Seven different models were compared, including GBLUP, ssGBLUP, and five Bayesian models. The ssGBLUP model consistently outperformed other models across all traits, with prediction accuracies ranging from 0.371 to 0.502. Further analyses showed that prediction accuracy improved with increasing cross-validation folds and marker density, particularly in the low-density panel. However, the improvement plateaued in medium-to-high-density scenarios. These findings underscore the importance of carefully selecting the model, marker density, and cross-validation strategy to optimize GP accuracy for carcass and body traits in commercial pigs. The insights from this study can guide breeders and researchers in maximizing genetic progress in pig breeding programs.

摘要

基因组预测(GP)利用全基因组标记来估计育种值,是加速家畜和植物育种中遗传进展的关键工具。GP的准确性取决于几个因素,包括统计模型、标记密度和交叉验证策略。本研究评估了这些因素,以优化杜洛克×(长白×大白)(DLY)猪群体中八个经济上重要的胴体和体型性状的GP准确性。本研究使用了来自1494头DLY猪的50K SNP芯片数据,并将其推算到全基因组序列(WGS)水平。比较了七种不同的模型,包括GBLUP、ssGBLUP和五种贝叶斯模型。ssGBLUP模型在所有性状上始终优于其他模型,预测准确性范围为0.371至0.502。进一步分析表明,随着交叉验证折数和标记密度的增加,预测准确性提高,特别是在低密度面板中。然而,在中高密度情况下,这种提高趋于平稳。这些发现强调了仔细选择模型、标记密度和交叉验证策略以优化商业猪胴体和体型性状的GP准确性的重要性。本研究的见解可以指导育种者和研究人员在猪育种计划中最大限度地提高遗传进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab62/11988176/88190caa5002/animals-15-00966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验