Suppr超能文献

在深部脑刺激中模拟跨深度电极-脑界面的电流分布

Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation.

作者信息

Yousif Nada, Liu Xuguang

机构信息

The Movement Disorders & Neurostimulation Unit, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, UK.

出版信息

Expert Rev Med Devices. 2007 Sep;4(5):623-31. doi: 10.1586/17434440.4.5.623.

Abstract

The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. In this article we present a brief review of the recent computational models that simulate the electric current and field distribution in 3D space and, consequently, make estimations of the brain volume being modulated by therapeutic DBS. Such structural modeling work can be categorized into three main approaches: target-specific modeling, models of instrumentation and modeling the electrode-brain interface. Comments are made for each of these approaches with emphasis on our electrode-brain interface modeling, since the stimulating current must travel across the electrode-brain interface in order to reach the surrounding brain tissue and modulate the pathological neural activity. For future modeling work, a combined approach needs to be taken to reveal the underlying mechanisms, and both structural and dynamic models need to be clinically validated to make reliable predictions about the therapeutic effect of DBS in order to assist clinical practice.

摘要

深部脑刺激(DBS)在临床上的广泛应用正在被用于治疗越来越多的神经疾病,然而对其潜在机制的了解却十分匮乏,这两者之间的不匹配因在体测量脑内电流传播的困难而变得更加复杂。在本文中,我们简要回顾了最近的计算模型,这些模型模拟了三维空间中的电流和场分布,从而对治疗性DBS所调节的脑体积进行估计。这种结构建模工作可分为三种主要方法:靶点特异性建模、仪器模型和电极-脑界面建模。我们对这些方法中的每一种都进行了评论,重点是我们的电极-脑界面建模,因为刺激电流必须穿过电极-脑界面才能到达周围脑组织并调节病理性神经活动。对于未来的建模工作,需要采用一种综合方法来揭示潜在机制,并且结构模型和动态模型都需要经过临床验证,以便对DBS的治疗效果做出可靠预测,从而辅助临床实践。

相似文献

9
Biophysical Principles and Computational Modeling of Deep Brain Stimulation.深部脑刺激的生物物理原理与计算建模
Neuromodulation. 2024 Apr;27(3):422-439. doi: 10.1016/j.neurom.2023.04.471. Epub 2023 May 19.
10
Sources and effects of electrode impedance during deep brain stimulation.脑深部电刺激期间电极阻抗的来源及影响
Clin Neurophysiol. 2006 Feb;117(2):447-54. doi: 10.1016/j.clinph.2005.10.007. Epub 2005 Dec 22.

引用本文的文献

1
Neuromorphic algorithms for brain implants: a review.用于脑植入物的神经形态算法:综述
Front Neurosci. 2025 Apr 11;19:1570104. doi: 10.3389/fnins.2025.1570104. eCollection 2025.
3
Induction and Quantification of Excitability Changes in Human Cortical Networks.诱导和量化人类皮质网络的兴奋性变化。
J Neurosci. 2018 Jun 6;38(23):5384-5398. doi: 10.1523/JNEUROSCI.1088-17.2018. Epub 2018 May 21.

本文引用的文献

8
Sources and effects of electrode impedance during deep brain stimulation.脑深部电刺激期间电极阻抗的来源及影响
Clin Neurophysiol. 2006 Feb;117(2):447-54. doi: 10.1016/j.clinph.2005.10.007. Epub 2005 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验