用于脑植入物的神经形态算法:综述

Neuromorphic algorithms for brain implants: a review.

作者信息

Pawlak Wiktoria Agata, Howard Newton

机构信息

ni2o, Washington, DC, United States.

出版信息

Front Neurosci. 2025 Apr 11;19:1570104. doi: 10.3389/fnins.2025.1570104. eCollection 2025.

Abstract

Neuromorphic computing technologies are about to change modern computing, yet most work thus far has emphasized hardware development. This review focuses on the latest progress in algorithmic advances specifically for potential use in brain implants. We discuss current algorithms and emerging neurocomputational models that, when implemented on neuromorphic hardware, could match or surpass traditional methods in efficiency. Our aim is to inspire the creation and deployment of models that not only enhance computational performance for implants but also serve broader fields like medical diagnostics and robotics inspiring next generations of neural implants.

摘要

神经形态计算技术即将改变现代计算,但迄今为止大多数工作都侧重于硬件开发。本综述重点关注专门用于脑植入物的算法进展的最新情况。我们讨论了当前的算法和新兴的神经计算模型,这些算法和模型在神经形态硬件上实现时,在效率方面可能会与传统方法相匹配或超越传统方法。我们的目标是激发模型的创建和部署,这些模型不仅能提高植入物的计算性能,还能服务于医学诊断和机器人技术等更广泛的领域,为下一代神经植入物带来启发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0278/12021827/11cb95beb0e7/fnins-19-1570104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索