Bradshaw W E, Holzapfel C M
Center for Ecology & Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
Mol Ecol. 2008 Jan;17(1):157-66. doi: 10.1111/j.1365-294X.2007.03509.x. Epub 2007 Sep 10.
The primary nonbiological result of recent rapid climate change is warming winter temperatures, particularly at northern latitudes, leading to longer growing seasons and new seasonal exigencies and opportunities. Biological responses reflect selection due to the earlier arrival of spring, the later arrival of fall, or the increasing length of the growing season. Animals from rotifers to rodents use the high reliability of day length to time the seasonal transitions in their life histories that are crucial to fitness in temperate and polar environments: when to begin developing in the spring, when to reproduce, when to enter dormancy or when to migrate, thereby exploiting favourable temperatures and avoiding unfavourable temperatures. In documented cases of evolutionary (genetic) response to recent, rapid climate change, the role of day length (photoperiodism) ranges from causal to inhibitory; in no case has there been demonstrated a genetic shift in thermal optima or thermal tolerance. More effort should be made to explore the role of photoperiodism in genetic responses to climate change and to rule out the role of photoperiod in the timing of seasonal life histories before thermal adaptation is assumed to be the major evolutionary response to climate change.
近期快速气候变化的主要非生物结果是冬季气温升高,尤其是在高纬度地区,这导致生长季节延长,并带来了新的季节性紧急情况和机遇。生物反应反映了由于春季提前到来、秋季推迟到来或生长季节延长而产生的选择。从轮虫到啮齿动物,动物利用日照长度的高度可靠性来安排其生活史中的季节性转变,这对温带和极地环境中的适应性至关重要:何时在春季开始发育、何时繁殖、何时进入休眠或何时迁徙,从而利用有利温度并避开不利温度。在有记录的对近期快速气候变化的进化(遗传)反应案例中,日照长度(光周期现象)的作用从因果关系到抑制作用不等;在任何情况下,都没有证明热最适值或热耐受性发生了遗传转变。在假定热适应是对气候变化的主要进化反应之前,应该更加努力地探索光周期现象在对气候变化的遗传反应中的作用,并排除光周期在季节性生活史时间安排中的作用。