Suppr超能文献

利用非配对绝热π脉冲进行体积选择的光谱成像:理论与应用

Spectroscopic imaging with volume selection by unpaired adiabatic pi pulses: theory and application.

作者信息

Valette Julien, Park Jang-Yeon, Gröhn Olli, Uğurbil Kāmil, Garwood Michael, Henry Pierre-Gilles

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street SE, Minneapolis, MN 55455, USA.

出版信息

J Magn Reson. 2007 Nov;189(1):1-12. doi: 10.1016/j.jmr.2007.08.013. Epub 2007 Aug 24.

Abstract

In NMR spectroscopy, volume selection can be advantageously achieved using adiabatic pi pulses, which enable high bandwidth and B(1) insensitivity. In order to avoid the generation of non-linear phase profiles and the subsequent signal loss caused by incoherent averaging, adiabatic pi pulses are usually used in pairs for volume selection in each spatial dimension. Alternatively, when performing spectroscopic imaging (SI), a high enough spatial resolution results in negligible phase dispersion within each pixel. This allows using only one pulse per selected spatial dimension, resulting in a reduced echo-time and reduced power deposition. In this work, the feasibility of such an approach is explored theoretically and numerically, allowing the derivation of explicit conditions to obtain SI images without artifact. Adequate spatial and spectral post-processing procedures are described to compensate for the effect of non-linear phase profiles. These developments are applied to SI in the rat brain at 9.4 T, using a new adiabatic sequence named Pseudo-LASER.

摘要

在核磁共振光谱学中,使用绝热π脉冲可以有利地实现体积选择,绝热π脉冲能够实现高带宽且对B(1)不敏感。为了避免产生非线性相位分布以及由非相干平均导致的后续信号损失,绝热π脉冲通常在每个空间维度上成对用于体积选择。或者,当进行光谱成像(SI)时,足够高的空间分辨率会使每个像素内的相位色散可忽略不计。这允许在每个选定的空间维度上仅使用一个脉冲,从而减少回波时间并降低功率沉积。在这项工作中,从理论和数值上探索了这种方法的可行性,从而能够推导出获得无伪影的SI图像的明确条件。描述了适当的空间和光谱后处理程序,以补偿非线性相位分布的影响。这些进展应用于9.4 T下大鼠脑的SI,使用一种名为伪激光的新绝热序列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验