Nicolau Dan V, Solana Gerardin, Kekic Murat, Fulga Florin, Mahanivong Chitladda, Wright Jonathan, Ivanova Elena P, dos Remedios Cristobal G
Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool, L69 3GJ, U.K.
Langmuir. 2007 Oct 9;23(21):10846-54. doi: 10.1021/la700412m. Epub 2007 Sep 14.
We studied the impact of surface hydrophobicity on the motility of actin filaments moving on heavy-meromyosin (HMM)-coated surfaces. Apart from nitrocellulose (NC), which is the current standard for motility assays, all materials tested are good candidates for microfabrication: hydrophilic and hydrophobic glass, poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBuMA), and a copolymer of O-acryloyl acetophenone oxime with a 4-acryloyloxybenzophenone (AAPO). The most hydrophilic (hydrophilic glass, contact angle 35 degrees) and the most hydrophobic (PtBuMA, contact angle 78 degrees) surfaces do not maintain the motility of actin filaments, presumably because of the low density of adsorbed HMM protein or its high levels of denaturation, respectively. The velocity of actin filaments presents higher values in the middle of this "surface hydrophobicity motility window" (NC, PMMA), and a bimodal distribution, which is more apparent at the edges of this motility window (hydrophobic glass and AAPO). A molecular surface analysis of HMM and its S1 units suggests that the two very different, temporally separated conformations of the HMM heads could exacerbate the surface-modulated protein behavior, which is common to all microdevices using surface-immobilized proteins. An explanation for the above behavior proposes that the motility of actin filaments on HMM-functionalized surfaces is the result of the action of three populations of motors, each in a different surface-protein conformation, that is, HMM with both heads working (high velocities), working with one head (low velocities), and fully denatured HMM (no motility). It is also proposed that the molecularly dynamic nature of polymer surfaces amplifies the impact of surface hydrophobicity on protein behavior. The study demonstrates that PMMA is a good candidate for the fabrication of future actomyosin-driven dynamic nanodevices because it induces the smoothest motility of individual nano-objects with velocities comparable with those obtained on NC.
我们研究了表面疏水性对在重酶解肌球蛋白(HMM)包被表面上移动的肌动蛋白丝运动性的影响。除了作为目前运动性检测标准的硝酸纤维素(NC)外,所有测试材料都是微加工的良好候选材料:亲水性和疏水性玻璃、聚甲基丙烯酸甲酯(PMMA)、聚甲基丙烯酸叔丁酯(PtBuMA)以及O-丙烯酰基苯乙酮肟与4-丙烯酰氧基二苯甲酮的共聚物(AAPO)。最亲水的表面(亲水性玻璃,接触角35度)和最疏水的表面(PtBuMA,接触角78度)都不能维持肌动蛋白丝的运动性,推测分别是由于吸附的HMM蛋白密度低或其变性程度高。肌动蛋白丝的速度在这个“表面疏水性运动窗口”的中间(NC、PMMA)呈现较高值,并且呈现双峰分布,在这个运动窗口的边缘(疏水性玻璃和AAPO)更为明显。对HMM及其S1亚基的分子表面分析表明,HMM头部两种非常不同、时间上分离的构象可能会加剧表面调节的蛋白质行为,这是所有使用表面固定化蛋白质的微器件所共有的。对上述行为的一种解释是,肌动蛋白丝在HMM功能化表面上的运动是三种马达群体作用的结果,每种马达处于不同的表面-蛋白质构象,即两个头部都起作用的HMM(高速度)、一个头部起作用的HMM(低速度)和完全变性的HMM(无运动性)。还提出聚合物表面的分子动力学性质放大了表面疏水性对蛋白质行为的影响。该研究表明,PMMA是制造未来肌动球蛋白驱动的动态纳米器件的良好候选材料,因为它能诱导单个纳米物体最平滑的运动,其速度与在NC上获得的速度相当。