Suppr超能文献

通过表达肺炎克雷伯菌dha操纵子基因的大肠杆菌生产1,3 - 丙二醇

1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon.

作者信息

Tong I T, Liao H H, Cameron D C

机构信息

Department of Chemical Engineering, University of Wisconsin, Madison 53706-1691.

出版信息

Appl Environ Microbiol. 1991 Dec;57(12):3541-6. doi: 10.1128/aem.57.12.3541-3546.1991.

Abstract

The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering.

摘要

肺炎克雷伯菌中的dha操纵子使该生物体能够在甘油上厌氧生长并产生1,3 - 丙二醇(1,3 - PD)。没有dha系统的大肠杆菌在没有外源电子受体的情况下无法在甘油上厌氧生长,也不产生1,3 - PD。在大肠杆菌AG1中构建的肺炎克雷伯菌ATCC 25955基因组文库富集了在甘油和二羟基丙酮上厌氧生长的能力,并筛选了1,3 - PD的产生情况。黏粒pTC1(总长度为42.5 kb,主要插入片段为18.2 kb)从一株产生1,3 - PD的大肠杆菌菌株中分离得到,发现其具有与dha操纵子的四个基因相关的酶活性:甘油脱水酶(dhaB)、1,3 - PD氧化还原酶(dhaT)、甘油脱氢酶(dhaD)和二羟基丙酮激酶(dhaK)。所有这四种活性都可由甘油的存在诱导。当大肠杆菌AG1/pTC1在复合培养基加甘油上生长时,甘油生成1,3 - PD的产量为0.46 mol/mol。主要发酵副产物是甲酸、乙酸和D - 乳酸。1,3 - PD是有机合成和聚合物生产中的中间体。1,3 - PD发酵为研究外源宿主中生化途径的相互作用以及开发代谢途径工程策略提供了一个有用的模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e61f/184009/67199fce73f2/aem00065-0154-a.jpg

相似文献

1
1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon.
Appl Environ Microbiol. 1991 Dec;57(12):3541-6. doi: 10.1128/aem.57.12.3541-3546.1991.
4
5
Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol.
Appl Microbiol Biotechnol. 2010 Aug;87(6):2177-84. doi: 10.1007/s00253-010-2678-0. Epub 2010 May 25.
6
7
Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
J Biosci Bioeng. 2016 Oct;122(4):421-6. doi: 10.1016/j.jbiosc.2016.03.011. Epub 2016 Apr 9.
8
Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.
J Biotechnol. 2014 May 10;177:13-9. doi: 10.1016/j.jbiotec.2014.02.011. Epub 2014 Feb 28.
9
Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species.
Res Microbiol. 1994 Feb;145(2):129-39. doi: 10.1016/0923-2508(94)90006-x.
10
Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae.
J Ind Microbiol Biotechnol. 2010 Jul;37(7):707-16. doi: 10.1007/s10295-010-0714-9. Epub 2010 Apr 9.

引用本文的文献

1
Progress in 1,3-propanediol biosynthesis.
Front Bioeng Biotechnol. 2024 Nov 29;12:1507680. doi: 10.3389/fbioe.2024.1507680. eCollection 2024.
2
An unprecedented function for a tungsten-containing oxidoreductase.
J Biol Inorg Chem. 2022 Dec;27(8):747-758. doi: 10.1007/s00775-022-01965-0. Epub 2022 Oct 21.
3
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in .
Biomolecules. 2022 May 18;12(5):715. doi: 10.3390/biom12050715.
4
Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion.
Appl Microbiol Biotechnol. 2022 Apr;106(8):2937-2951. doi: 10.1007/s00253-022-11898-y. Epub 2022 Apr 13.
5
Production of R- and S-1,2-propanediol in engineered Lactococcus lactis.
AMB Express. 2021 Aug 16;11(1):117. doi: 10.1186/s13568-021-01276-8.
7
Establishing synthesis pathway-host compatibility via enzyme solubility.
Biotechnol Bioeng. 2019 Jun;116(6):1405-1416. doi: 10.1002/bit.26959. Epub 2019 Mar 29.
8
Structural and functional insights into asymmetric enzymatic dehydration of alkenols.
Nat Chem Biol. 2017 Mar;13(3):275-281. doi: 10.1038/nchembio.2271. Epub 2017 Jan 9.
9
Key enzymes catalyzing glycerol to 1,3-propanediol.
Biotechnol Biofuels. 2016 Mar 10;9:57. doi: 10.1186/s13068-016-0473-6. eCollection 2016.
10
Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications.
Glycoconj J. 2015 Oct;32(7):425-41. doi: 10.1007/s10719-015-9583-9. Epub 2015 May 1.

本文引用的文献

4
Plasmid vectors capable of transferring large DNA fragments to yeast.
DNA. 1981;1(1):27-36. doi: 10.1089/dna.1.1981.1.27.
5
DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.
J Bacteriol. 1982 Aug;151(2):591-9. doi: 10.1128/jb.151.2.591-599.1982.
6
Purification and properties of dihydroxyacetone kinase from Klebsiella pneumoniae.
J Bacteriol. 1984 Oct;160(1):55-60. doi: 10.1128/jb.160.1.55-60.1984.
9
Growth stasis by accumulated L-alpha-glycerophosphate in Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1325-9. doi: 10.1128/jb.90.5.1325-1329.1965.
10
Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli.
J Bacteriol. 1970 Jun;102(3):753-9. doi: 10.1128/jb.102.3.753-759.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验