Hu Sanqing, Stead Matt, Worrell Gregory A
Department of Neurology, Division of Epilepsy and Electroencephalography, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
IEEE Trans Biomed Eng. 2007 Sep;54(9):1560-72. doi: 10.1109/TBME.2007.892929.
The pursuit of an inactive recording reference is one of the oldest technical problems in electroencephalography (EEG). Since commonly used cephalic references contaminate EEG and can lead to misinterpretation, extraction of the reference contribution is of fundamental interest. Here, we apply independent component analysis (ICA) to intracranial recordings and propose two methods to automatically identify and remove the reference based on the assumption that the scalp reference is independent from the local and distributed intracranial sources. This assumption, supported by our results, is generally valid because the reference scalp electrode is relatively electrically isolated from the intracranial electrodes by the skull's high resistivity. We point out that the linear model is underdetermined when the reference is considered as a source, and discuss one special underdetermined case for which a unique class of outputs can be separated. For this case most ICA algorithms can be applied, and we argue that intracranial or scalp EEGs follow this special case. We apply the two proposed methods to intracranial EEGs from three patients undergoing evaluation for epilepsy surgery, and compare the results to bipolar and average reference recordings. The proposed methods should have wide application in quantitative EEG studies.
寻求无活性记录参考是脑电图(EEG)领域最古老的技术问题之一。由于常用的头皮参考会污染脑电图并可能导致错误解读,提取参考贡献具有根本重要性。在此,我们将独立成分分析(ICA)应用于颅内记录,并基于头皮参考与局部及分布式颅内源相互独立的假设,提出两种自动识别和去除参考的方法。我们的结果支持这一假设,该假设通常是有效的,因为参考头皮电极通过颅骨的高电阻率与颅内电极相对电隔离。我们指出,当将参考视为一个源时,线性模型是欠定的,并讨论了一种特殊的欠定情况,对于这种情况可以分离出一类独特的输出。对于这种情况,大多数ICA算法都可应用,并且我们认为颅内或头皮脑电图遵循这种特殊情况。我们将所提出的两种方法应用于三名接受癫痫手术评估患者的颅内脑电图,并将结果与双极和平均参考记录进行比较。所提出的方法应在定量脑电图研究中有广泛应用。