Jiang Xiaocheng, Xiong Qihua, Nam Sungwoo, Qian Fang, Li Yat, Lieber Charles M
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nano Lett. 2007 Oct;7(10):3214-8. doi: 10.1021/nl072024a. Epub 2007 Sep 15.
Radial core/shell nanowires (NWs) represent an important class of one-dimensional (1D) systems with substantial potential for exploring fundamental materials electronic and photonic properties. Here, we report the rational design and synthesis of InAs/InP core/shell NW heterostructures with quantum-confined, high-mobility electron carriers. Transmission electron microscopy studies revealed single-crystal InAs cores with epitaxial InP shells 2-3 nm in thickness, and energy-dispersive X-ray spectroscopy analysis further confirmed the composition of the designed heterostructure. Room-temperature electrical measurements on InAs/InP NW field-effect transistors (NWFETs) showed significant improvement in the on-current and transconductance compared to InAs NWFETs fabricated in parallel, with a room-temperature electron mobility, 11,500 cm(2)/Vs, substantially higher than other synthesized 1D nanostructures. In addition, NWFET devices configured with integral high dielectric constant gate oxide and top-gate structure yielded scaled on-currents up to 3.2 mA/microm, which are larger than values reported for other n-channel FETs. The design and realization of high electron mobility InAs/InP NWs extends our toolbox of nanoscale building blocks and opens up opportunities for fundamental and applied studies of quantum coherent transport and high-speed, low-power nanoelectronic circuits.
径向核壳纳米线(NWs)是一类重要的一维(1D)系统,在探索基础材料的电子和光子特性方面具有巨大潜力。在此,我们报告了具有量子限制、高迁移率电子载流子的InAs/InP核壳NW异质结构的合理设计与合成。透射电子显微镜研究揭示了具有2 - 3纳米厚外延InP壳的单晶InAs核,能量色散X射线光谱分析进一步证实了所设计异质结构的组成。与并行制造的InAs NW场效应晶体管(NWFETs)相比,对InAs/InP NW场效应晶体管进行的室温电学测量显示,其导通电流和跨导有显著改善,室温电子迁移率为11,500 cm²/Vs,大大高于其他合成的一维纳米结构。此外,配置有集成高介电常数栅极氧化物和顶栅结构的NWFET器件产生的缩放导通电流高达3.2 mA/μm,大于其他n沟道FET报道的值。高电子迁移率InAs/InP NWs的设计与实现扩展了我们的纳米级构建模块工具箱,并为量子相干输运以及高速、低功耗纳米电子电路的基础和应用研究开辟了机会。