Ramos Daniel R, Victoria García M, Canle L Moisés, Arturo Santaballa J, Furtmüller Paul G, Obinger Christian
Chemical Reactivity & Photoreactivity Group, Department of Physical Chemistry & Chemical Engineering I, University of A Coruña, Alejandro de la Sota 1, E-15008 A Coruña, Spain.
Arch Biochem Biophys. 2007 Oct 15;466(2):221-33. doi: 10.1016/j.abb.2007.07.024. Epub 2007 Aug 17.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.
髓过氧化物酶(MPO)催化氯离子的双电子氧化反应,从而生成次氯酸(HOCl)。牛磺酸(2-氨基乙磺酸,Tau)被认为是HOCl的捕获剂,能形成寿命较长的氧化剂一氯牛磺酸[(N-Cl)-Tau],参与病原体防御。在此,我们通过跟踪在pH 4.0 - 7.0条件下,不同过氧化氢(H₂O₂)浓度时MPO介导形成(N-Cl)-Tau的初始速率和平衡速率,对先前的研究进行修正和扩展。初始速率研究表明,在测定条件下(即[H₂O₂]≥2000[MPO])活性位点未饱和。平衡状态下Tau氯化反应的减速可通过H₂O₂介导的化合物I还原为化合物II所建立的氧化还原平衡进行定量描述。在平衡状态下,[H₂O₂]约为0.4mM且pH为5时可获得最大氯化速率。所提出的机制包括在工作条件下发生的已知酸碱和结合平衡。动力学数据排除了目前被接受的机制,即质子参与导致形成氯化剂的分子步骤(MPO-I + Cl⁻)。结果支持通过前者或甚至独立于前者形成氯化化合物I-Cl⁻复合物(MPO-I-Cl)和/或ClO⁻。ClO⁻扩散离开并在血红素口袋外迅速质子化为HOCl。较小的底物将在酶内部被MPO-I-Cl氯化,在外部被HOCl氯化,而较大的底物只能与后者反应。