Blasiak Leah C, Drennan Catherine L
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Acc Chem Res. 2009 Jan 20;42(1):147-55. doi: 10.1021/ar800088r.
Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% ( Harris , C. M. ; Kannan , R. ; Kopecka , H. ; Harris , T. M. J. Am. Chem. Soc. 1985 , 107 , 6652 - 6658 ). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce (18)F-labeled molecules for use in positron emission tomography (PET) ( Deng , H. ; Cobb , S. L. ; Gee , A. D. ; Lockhart , A. ; Martarello , L. ; McGlinchey , R. P. ; O'Hagan , D. ; Onega , M. Chem. Commun. 2006 , 652 - 654 ). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry ( Dong , C. ; Huang , F. ; Deng , H. ; Schaffrath , C. ; Spencer , J. B. ; O'Hagan , D. ; Naismith , J. H. Nature 2004 , 427 , 561 - 565 ). Structural characterization has provided a basis toward a mechanistic understanding of the specificity and chemistry of these enzymes. In particular, the latest crystallographic snapshots of active site architecture and halide binding sites have provided key insights into enzyme catalysis. Herein is a summary of the five classes of halogenases, focusing on the three most recently discovered: flavin-dependent halogenases, non-heme iron-dependent halogenases, and nucleophilic halogenases. Further, the potential roles of halide-binding sites in determining halide selectivity are discussed, as well as whether or not binding-site composition is always a seminal factor for selectivity. Expanding our understanding of the basic chemical principles that dictate the activity of the halogenases will advance both biology and chemistry. A thorough mechanistic analysis will elucidate the biological principles that dictate specificity, and the application of those principles to new synthetic techniques will expand the utility of halogenations in small-molecule development.
简单的卤素取代基常常提供关键的结构特征,这些特征决定了包括抗生素和激素在内的天然产物的效力和选择性。例如,抗生素万古霉素上的单个氯原子被氢取代时,其抗菌活性会降低多达70%(哈里斯,C.M.;坎南,R.;科佩茨卡,H.;哈里斯,T.M.《美国化学会志》1985年,107卷,6652 - 6658页)。本综述分析了卤化酶中结构如何构成其作用机制,卤化酶是自然界设计用于将卤素整合到各种底物中的分子机器。将卤素整合到复杂分子中的传统合成方法常常因缺乏特异性和区域选择性而变得复杂。然而,自然界已经开发出多种巧妙的机制,能够以区域和立体选择性对特定底物进行卤化。对生物卤化途径的深入理解可能会促使开发新的合成方法,以创造具有增强功能的新化合物。研究人员已经选用来自微生物卡特利链霉菌的一种氟化酶来生产用于正电子发射断层扫描(PET)的(18)F标记分子(邓,H.;科布,S.L.;吉,A.D.;洛克哈特,A.;马尔塔雷洛,L.;麦格林奇,R.P.;奥哈根,D.;奥内加,M.《化学通讯》2006年,652 - 654页)。因此,对天然存在的酶促卤化机制的发现和表征已成为一个活跃的研究领域。已知的卤化酶种类已从常见的卤过氧化物酶扩展到包括氧依赖性酶和氟化酶。最近,一种催化氯化反应的亲核卤化酶的发现扩展了生物卤化化学的范畴(董,C.;黄,F.;邓,H.;沙夫拉特,C.;斯宾塞,J.B.;奥哈根,D.;奈史密斯,J.H.《自然》2004年,427卷,561 - 565页)。结构表征为从机制上理解这些酶的特异性和化学性质提供了基础。特别是,活性位点结构和卤化物结合位点的最新晶体学快照为酶催化提供了关键见解。本文总结了五类卤化酶,重点关注最近发现的三类:黄素依赖性卤化酶、非血红素铁依赖性卤化酶和亲核卤化酶。此外,还讨论了卤化物结合位点在决定卤化物选择性方面的潜在作用,以及结合位点组成是否始终是选择性的关键因素。扩展我们对决定卤化酶活性的基本化学原理的理解将推动生物学和化学的发展。全面的机制分析将阐明决定特异性的生物学原理,将这些原理应用于新的合成技术将扩大卤化反应在小分子开发中的应用。