Suppr超能文献

肌动球蛋白收缩性和微管驱动非洲爪蟾瓶状细胞的顶端收缩。

Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells.

作者信息

Lee Jen-Yi, Harland Richard M

机构信息

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA.

出版信息

Dev Biol. 2007 Nov 1;311(1):40-52. doi: 10.1016/j.ydbio.2007.08.010. Epub 2007 Aug 10.

Abstract

Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.

摘要

细胞形状的改变对于诸如原肠胚形成、神经胚形成和器官发生等形态发生事件至关重要。然而,驱动细胞形状改变的细胞生物学机制却知之甚少,尤其是在脊椎动物中。非洲爪蟾原肠胚形成的起始阶段以背侧边缘区瓶状细胞的顶端收缩为标志,这会使组织弯曲并在胚孔唇处形成一个裂缝。我们发现瓶状细胞对原肠胚形成有显著贡献,因为它们的形状变化能够产生初始胚孔形成所需的力。由于肌动蛋白和肌球蛋白常与收缩作用相关,我们研究了它们在瓶状细胞中的定位和功能。F - 肌动蛋白和活化的肌球蛋白在瓶状细胞的顶端积累,并且肌动蛋白和肌球蛋白抑制剂要么阻止要么严重干扰瓶状细胞的形成,这表明肌动球蛋白收缩性是顶端收缩所必需的。微管以顶基方向的阵列形式定位于瓶状细胞中,从顶端表面发出。令人惊讶的是,在诺考达唑存在的情况下顶端收缩受到抑制,但在紫杉醇存在时却没有,这表明完整而非动态的微管是顶端收缩所必需的。我们的结果表明肌动球蛋白收缩性是瓶状细胞形态发生所必需的,并且进一步表明微管在顶端收缩过程中具有一种新颖且意想不到的作用。

相似文献

1
Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells.
Dev Biol. 2007 Nov 1;311(1):40-52. doi: 10.1016/j.ydbio.2007.08.010. Epub 2007 Aug 10.
2
The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation.
Development. 2018 Dec 12;145(24):dev168922. doi: 10.1242/dev.168922.
3
Uncorking gastrulation: the morphogenetic movement of bottle cells.
Wiley Interdiscip Rev Dev Biol. 2012 Mar-Apr;1(2):286-93. doi: 10.1002/wdev.19. Epub 2011 Dec 12.
4
The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during gastrulation.
Mol Biol Cell. 2023 Jun 1;34(7):ar64. doi: 10.1091/mbc.E22-09-0411. Epub 2023 Apr 12.
5
Endocytosis is required for efficient apical constriction during Xenopus gastrulation.
Curr Biol. 2010 Feb 9;20(3):253-8. doi: 10.1016/j.cub.2009.12.021. Epub 2010 Jan 21.
6
Assays for Apical Constriction Using the Xenopus Model.
Methods Mol Biol. 2022;2438:415-437. doi: 10.1007/978-1-0716-2035-9_24.
7
Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation.
Development. 2015 Jan 1;142(1):99-107. doi: 10.1242/dev.111161. Epub 2014 Dec 5.
8
Mechanics of blastopore closure during amphibian gastrulation.
Dev Biol. 2015 Feb 1;398(1):57-67. doi: 10.1016/j.ydbio.2014.11.011. Epub 2014 Nov 20.
9
Triggering a cell shape change by exploiting preexisting actomyosin contractions.
Science. 2012 Mar 9;335(6073):1232-5. doi: 10.1126/science.1217869. Epub 2012 Feb 9.
10
Architecture of the cortical actomyosin network driving apical constriction in C. elegans.
J Cell Biol. 2023 Sep 4;222(9). doi: 10.1083/jcb.202302102. Epub 2023 Jun 23.

引用本文的文献

1
β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis.
J Cell Sci. 2024 Aug 1;137(15). doi: 10.1242/jcs.261946. Epub 2024 Aug 12.
2
Noncanonical function of folate through folate receptor 1 during neural tube formation.
Nat Commun. 2024 Feb 22;15(1):1642. doi: 10.1038/s41467-024-45775-1.
3
Blastopore gating mechanism to regulate extracellular fluid excretion.
iScience. 2023 Apr 8;26(5):106585. doi: 10.1016/j.isci.2023.106585. eCollection 2023 May 19.
4
The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during gastrulation.
Mol Biol Cell. 2023 Jun 1;34(7):ar64. doi: 10.1091/mbc.E22-09-0411. Epub 2023 Apr 12.
6
Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands.
Dev Biol. 2023 Jan;493:67-79. doi: 10.1016/j.ydbio.2022.10.013. Epub 2022 Nov 2.
7
Assays for Apical Constriction Using the Xenopus Model.
Methods Mol Biol. 2022;2438:415-437. doi: 10.1007/978-1-0716-2035-9_24.
8
9
Mechanical regulation of early vertebrate embryogenesis.
Nat Rev Mol Cell Biol. 2022 Mar;23(3):169-184. doi: 10.1038/s41580-021-00424-z. Epub 2021 Nov 9.
10
Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice.
Nat Commun. 2021 Feb 19;12(1):1159. doi: 10.1038/s41467-021-21372-4.

本文引用的文献

1
Mechanics of invagination.
Anat Rec. 1947 Feb;97(2):139-56. doi: 10.1002/ar.1090970203.
3
Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2.
Science. 2007 Jan 19;315(5810):384-6. doi: 10.1126/science.1134833.
4
Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility.
Curr Biol. 2006 Oct 24;16(20):1986-97. doi: 10.1016/j.cub.2006.08.090.
5
Shroom4 (Kiaa1202) is an actin-associated protein implicated in cytoskeletal organization.
Cell Motil Cytoskeleton. 2007 Jan;64(1):49-63. doi: 10.1002/cm.20167.
6
Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts.
J Cell Sci. 2006 May 1;119(Pt 9):1801-11. doi: 10.1242/jcs.02903. Epub 2006 Apr 11.
7
Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.
J Cell Sci. 2005 Nov 15;118(Pt 22):5191-203. doi: 10.1242/jcs.02626. Epub 2005 Oct 25.
8
A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.
Development. 2005 Oct;132(20):4599-610. doi: 10.1242/dev.02041. Epub 2005 Sep 21.
9
Organization of vesicular trafficking in epithelia.
Nat Rev Mol Cell Biol. 2005 Mar;6(3):233-47. doi: 10.1038/nrm1593.
10
Concentric zones of active RhoA and Cdc42 around single cell wounds.
J Cell Biol. 2005 Jan 31;168(3):429-39. doi: 10.1083/jcb.200411109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验