Suppr超能文献

一种用于研究化学反应网络中持久性的Petri网方法。

A Petri net approach to the study of persistence in chemical reaction networks.

作者信息

Angeli David, De Leenheer Patrick, Sontag Eduardo D

机构信息

Dip di Sistemi e Informatica, University of Firenze, Italy.

出版信息

Math Biosci. 2007 Dec;210(2):598-618. doi: 10.1016/j.mbs.2007.07.003. Epub 2007 Aug 1.

Abstract

Persistence is the property, for differential equations in R(n), that solutions starting in the positive orthant do not approach the boundary of the orthant. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways.

摘要

持久性是实数空间(R(n))中微分方程的一种性质,即从正卦限出发的解不会趋近于该卦限的边界。对于化学反应和种群模型而言,这转化为非灭绝性质:假设在反应开始时每种物种都存在,那么在反应过程中不会有物种趋于灭绝。本文利用Petri网理论中的概念和工具,给出了反应网络中化学物种持久性的可检验条件,并在细胞信号通路建模中出现的各种系统上验证了这些条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验