Suppr超能文献

提高烧伤患者死亡率的预测能力。

Improving the ability to predict mortality among burn patients.

作者信息

McGwin Gerald, George Richard L, Cross James M, Rue Loring W

机构信息

Section of Trauma, Burns, and Surgical Critical Care, Division of General Surgery, Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.

出版信息

Burns. 2008 May;34(3):320-7. doi: 10.1016/j.burns.2007.06.003. Epub 2007 Sep 14.

Abstract

BACKGROUND

Early efforts to predict death following severe burns focused on age and burn size; more recent work incorporated inhalation injury and pneumonia. Gender, co-morbid illness, and co-existent trauma have been implicated in burn mortality but have rarely been incorporated into predictive models.

METHODS

The National Burn Repository (NBR) and the National Trauma Data Bank (NTDB) provided data on 68,661 (54,219 and 14,442, respectively) burn patients that was used to develop and validate, respectively, a predictive model of burn mortality. Logistic regression was used to model the odds of mortality with respect to age, gender, % body surface area burned (BSAB), co-existent trauma, inhalation injury, pneumonia, and co-morbid illness. Performance of the predictive model was assessed using a deviance statistic, receiver operating characteristic (ROC) curves, and the Hosmer-Lemeshow (HL) statistic.

RESULTS

The predictive model that demonstrated optimal performance included the variables age, percent total BSAB, inhalation injury, co-existent trauma, and pneumonia. The area under the ROC curve for this model was 0.94 and the HL statistic was 16.0. The inclusion of additional variables, i.e., gender, co-morbid illness, did not improve the performance of the model despite reduction in the model deviance. When the predictive model was applied to the validation data source, the area under the ROC curve was 0.87 and the HL statistic was 10.0, indicating good discrimination and calibration.

CONCLUSION

The results of this study suggest that a comprehensive predictive model of burn mortality incorporating certain variables not previously considered in other models provides superior predictive ability.

摘要

背景

早期预测严重烧伤后死亡的研究主要集中在年龄和烧伤面积;最近的研究纳入了吸入性损伤和肺炎。性别、合并疾病和并存创伤与烧伤死亡率有关,但很少被纳入预测模型。

方法

国家烧伤资料库(NBR)和国家创伤数据库(NTDB)分别提供了68661例烧伤患者的数据(分别为54219例和14442例),用于建立和验证烧伤死亡率预测模型。采用逻辑回归对年龄、性别、烧伤体表面积百分比(BSAB)、并存创伤、吸入性损伤、肺炎和合并疾病的死亡几率进行建模。使用偏差统计量、受试者工作特征(ROC)曲线和霍斯默-莱梅肖(HL)统计量评估预测模型的性能。

结果

表现最佳的预测模型包括年龄、总BSAB百分比、吸入性损伤、并存创伤和肺炎等变量。该模型的ROC曲线下面积为0.94,HL统计量为16.0。纳入其他变量,即性别、合并疾病,尽管模型偏差有所降低,但并未改善模型性能。当将预测模型应用于验证数据源时,ROC曲线下面积为0.87,HL统计量为10.0,表明具有良好的区分度和校准度。

结论

本研究结果表明,一个综合了某些其他模型未考虑的变量的烧伤死亡率预测模型具有更好的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验