Suppr超能文献

嗜酸性粒细胞分泌机制:大型囊泡管状载体介导颗粒衍生细胞因子和其他蛋白质的运输与释放。

Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins.

作者信息

Melo Rossana C N, Spencer Lisa A, Dvorak Ann M, Weller Peter F

机构信息

Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, MG, Brazil.

出版信息

J Leukoc Biol. 2008 Feb;83(2):229-36. doi: 10.1189/jlb.0707503. Epub 2007 Sep 17.

Abstract

Eosinophils generate and store a battery of proteins, including classical cationic proteins, cytokines, chemokines, and growth factors. Rapid secretion of these active mediators by eosinophils is central to a range of inflammatory and immunoregulatory responses. Eosinophil products are packaged within a dominant population of cytoplasmic specific granules and generally secreted by piecemeal degranulation, a process mediated by transport vesicles. Large, pleiomorphic vesiculotubular carriers were identified recently as key players for moving eosinophil proteins from granules to the plasma membrane for extracellular release. During secretion, these specialized, morphologically distinct carriers, termed eosinophil sombrero vesicles, are actively formed and direct differential and rapid release of eosinophil proteins. This review highlights recent discoveries concerning the organization of the human eosinophil secretory pathway. These discoveries are defining a broader role for large vesiculotubular carriers in the intracellular trafficking and secretion of proteins, including selective receptor-mediated mobilization and transport of cytokines.

摘要

嗜酸性粒细胞产生并储存一系列蛋白质,包括经典阳离子蛋白、细胞因子、趋化因子和生长因子。嗜酸性粒细胞快速分泌这些活性介质是一系列炎症和免疫调节反应的核心。嗜酸性粒细胞产物被包装在细胞质特异性颗粒的主要群体中,通常通过由运输小泡介导的逐片脱颗粒过程分泌。最近,大型、多形性囊泡管状载体被确定为将嗜酸性粒细胞蛋白从颗粒转运到质膜以进行细胞外释放的关键参与者。在分泌过程中,这些特殊的、形态上不同的载体,称为嗜酸性粒细胞宽边帽小泡,会被积极形成,并直接实现嗜酸性粒细胞蛋白的差异和快速释放。本综述重点介绍了有关人类嗜酸性粒细胞分泌途径组织的最新发现。这些发现正在确定大型囊泡管状载体在蛋白质的细胞内运输和分泌中的更广泛作用,包括细胞因子的选择性受体介导的动员和运输。

相似文献

2
Vesicle-mediated secretion of human eosinophil granule-derived major basic protein.
Lab Invest. 2009 Jul;89(7):769-81. doi: 10.1038/labinvest.2009.40. Epub 2009 Apr 27.
5
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils.
Exp Cell Res. 2015 Oct 1;337(2):129-135. doi: 10.1016/j.yexcr.2015.07.003. Epub 2015 Aug 6.
6
Contemporary understanding of the secretory granules in human eosinophils.
J Leukoc Biol. 2018 Jul;104(1):85-93. doi: 10.1002/JLB.3MR1217-476R. Epub 2018 May 11.
9
Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy.
Exp Cell Res. 2016 Oct 1;347(2):385-90. doi: 10.1016/j.yexcr.2016.08.016. Epub 2016 Aug 22.
10
Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology.
Curr Opin Immunol. 2009 Dec;21(6):694-9. doi: 10.1016/j.coi.2009.07.011. Epub 2009 Aug 24.

引用本文的文献

1
Phenotypically distinguishable eosinophilic cells do not impact epithelial functions in a triple-culture intestinal model.
Front Immunol. 2025 Aug 4;16:1641651. doi: 10.3389/fimmu.2025.1641651. eCollection 2025.
2
Eosinophils: old cells, new directions.
Front Med (Lausanne). 2025 Jan 16;11:1470381. doi: 10.3389/fmed.2024.1470381. eCollection 2024.
3
Eosinophil extracellular traps in respiratory ailment: Pathogenic mechanisms and clinical translation.
World J Otorhinolaryngol Head Neck Surg. 2023 Nov 1;10(3):213-224. doi: 10.1002/wjo2.138. eCollection 2024 Sep.
4
Eosinophil extracellular vesicles and DNA traps in allergic inflammation.
Front Allergy. 2024 Aug 1;5:1448007. doi: 10.3389/falgy.2024.1448007. eCollection 2024.
7
The emerging role of exosomes in innate immunity, diagnosis and therapy.
Front Immunol. 2023 Jan 16;13:1085057. doi: 10.3389/fimmu.2022.1085057. eCollection 2022.
8
Schistosomiasis Mansoni-Recruited Eosinophils: An Overview in the Granuloma Context.
Microorganisms. 2022 Oct 13;10(10):2022. doi: 10.3390/microorganisms10102022.
9
In Vivo ETosis of Human Eosinophils: The Ultrastructural Signature Captured by TEM in Eosinophilic Diseases.
Front Immunol. 2022 Jul 7;13:938691. doi: 10.3389/fimmu.2022.938691. eCollection 2022.
10
Mitochondrial Population in Mouse Eosinophils: Ultrastructural Dynamics in Cell Differentiation and Inflammatory Diseases.
Front Cell Dev Biol. 2022 Mar 21;10:836755. doi: 10.3389/fcell.2022.836755. eCollection 2022.

本文引用的文献

2
New insights into membrane trafficking and protein sorting.
Int Rev Cytol. 2007;261:47-116. doi: 10.1016/S0074-7696(07)61002-X.
3
Eosinophils: singularly destructive effector cells or purveyors of immunoregulation?
J Allergy Clin Immunol. 2007 Jun;119(6):1313-20. doi: 10.1016/j.jaci.2007.03.043. Epub 2007 May 3.
4
Eosinophil trafficking in allergy and asthma.
J Allergy Clin Immunol. 2007 Jun;119(6):1303-10; quiz 1311-2. doi: 10.1016/j.jaci.2007.03.048. Epub 2007 May 3.
5
Eosinophils in the pathogenesis of allergic airways disease.
Cell Mol Life Sci. 2007 May;64(10):1269-89. doi: 10.1007/s00018-007-6527-y.
6
Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes.
Traffic. 2006 Aug;7(8):1092-103. doi: 10.1111/j.1600-0854.2006.00453.x. Epub 2006 Jun 19.
7
Differential secretion of cytokines.
Sci STKE. 2006 Jun 6;2006(338):pe26. doi: 10.1126/stke.3382006pe26.
8
The eosinophil.
Annu Rev Immunol. 2006;24:147-74. doi: 10.1146/annurev.immunol.24.021605.090720.
9
Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3333-8. doi: 10.1073/pnas.0508946103. Epub 2006 Feb 21.
10
Biogenesis of tubular ER-to-Golgi transport intermediates.
Mol Biol Cell. 2006 Feb;17(2):723-37. doi: 10.1091/mbc.e05-06-0580. Epub 2005 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验