Suppr超能文献

一种在前哨淋巴结阳性时预测非前哨淋巴结转移疾病的模型。

A model for predicting non-sentinel lymph node metastatic disease when the sentinel lymph node is positive.

作者信息

Pal A, Provenzano E, Duffy S W, Pinder S E, Purushotham A D

机构信息

Addenbrookes NHS Foundation Trust, Cambridge, UK.

出版信息

Br J Surg. 2008 Mar;95(3):302-9. doi: 10.1002/bjs.5943.

Abstract

BACKGROUND

Women with axillary sentinel lymph node (SLN)-positive breast cancer usually undergo completion axillary lymph node dissection (ALND). However, not all patients with positive SLNs have further axillary nodal disease. Therefore, in the patients with low risk of further disease, completion ALND could be avoided. The Memorial Sloan-Kettering Cancer Center (MSKCC) developed a nomogram to estimate the risk of non-SLN disease. This study critically appraised the nomogram and refined the model to improve predictive accuracy.

METHODS

The MSKCC nomogram was applied to 118 patients with a positive axillary SLN biopsy who subsequently had completion ALND. Predictive accuracy was assessed by calculating the area under the receiver-operator characteristic (ROC) curve. A further predictive model was developed using more detailed pathological information. Backward stepwise multiple logistic regression was used to develop the predictive model for further axillary lymph node disease. This was then converted to a probability score. After k-fold cross-validation within the data, an inverse variance weighted mean ROC curve and area below the ROC curve was calculated.

RESULTS

The MSKCC nomogram had an area under the ROC curve of 68 per cent. The revised predictive model showed the weighted mean area under the ROC curve to be 84 per cent.

CONCLUSION

The modified predictive model, which incorporated size of SLN metastasis, improved predictive accuracy, although further testing on an independent data set is desirable.

摘要

背景

腋窝前哨淋巴结(SLN)阳性的乳腺癌女性患者通常会接受腋窝淋巴结清扫术(ALND)。然而,并非所有SLN阳性患者都存在进一步的腋窝淋巴结病变。因此,对于疾病进展风险较低的患者,可以避免进行腋窝淋巴结清扫术。纪念斯隆凯特琳癌症中心(MSKCC)开发了一种列线图来评估非前哨淋巴结疾病的风险。本研究对该列线图进行了严格评估,并对模型进行了优化以提高预测准确性。

方法

将MSKCC列线图应用于118例腋窝SLN活检阳性且随后接受了腋窝淋巴结清扫术的患者。通过计算受试者工作特征(ROC)曲线下面积来评估预测准确性。利用更详细的病理信息开发了进一步的预测模型。采用向后逐步多元逻辑回归来建立进一步腋窝淋巴结疾病的预测模型。然后将其转换为概率评分。在数据内进行k折交叉验证后,计算逆方差加权平均ROC曲线和ROC曲线下面积。

结果

MSKCC列线图的ROC曲线下面积为68%。修订后的预测模型显示,ROC曲线下加权平均面积为84%。

结论

纳入SLN转移大小的改良预测模型提高了预测准确性,不过仍需要在独立数据集上进行进一步测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验