Suppr超能文献

基于机器学习算法的中国乳腺癌患者 ≥ 3 个阳性前哨淋巴结的非前哨淋巴结转移的个体化预测。

Individualized prediction of non-sentinel lymph node metastasis in Chinese breast cancer patients with ≥ 3 positive sentinel lymph nodes based on machine-learning algorithms.

机构信息

The Breast Center, Jieyang People's Hospital, Jieyang, Guangdong, 522000, People's Republic of China.

The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.

出版信息

BMC Cancer. 2024 Sep 2;24(1):1090. doi: 10.1186/s12885-024-12870-x.

Abstract

BACKGROUND

Axillary lymph node dissection (ALND) is a standard procedure for early-stage breast cancer (BC) patients with three or more positive sentinel lymph nodes (SLNs). However, ALND can lead to significant postoperative complications without always providing additional clinical benefits. This study aims to develop machine-learning (ML) models to predict non-sentinel lymph node (non-SLN) metastasis in Chinese BC patients with three or more positive SLNs, potentially allowing the omission of ALND.

METHODS

Data from 2217 BC patients who underwent SLN biopsy at Shantou University Medical College were analyzed, with 634 having positive SLNs. Patients were categorized into those with ≤ 2 positive SLNs and those with ≥ 3 positive SLNs. We applied nine ML algorithms to predict non-SLN metastasis. Model performance was evaluated using ROC curves, precision-recall curves, and calibration curves. Decision Curve Analysis (DCA) assessed the clinical utility of the models.

RESULTS

The RF model showed superior predictive performance, achieving an AUC of 0.987 in the training set and 0.828 in the validation set. Key predictive features included size of positive SLNs, tumor size, number of SLNs, and ER status. In external validation, the RF model achieved an AUC of 0.870, demonstrating robust predictive capabilities.

CONCLUSION

The developed RF model accurately predicts non-SLN metastasis in BC patients with ≥ 3 positive SLNs, suggesting that ALND might be avoided in selected patients by applying additional axillary radiotherapy. This approach could reduce the incidence of postoperative complications and improve patient quality of life. Further validation in prospective clinical trials is warranted.

摘要

背景

腋窝淋巴结清扫术(ALND)是早期乳腺癌(BC)患者中 3 个或以上阳性前哨淋巴结(SLN)的标准治疗方法。然而,ALND 可能导致严重的术后并发症,而并不总是提供额外的临床获益。本研究旨在开发机器学习(ML)模型,以预测中国 3 个或以上阳性 SLN 的 BC 患者中的非前哨淋巴结(non-SLN)转移,从而可能避免进行 ALND。

方法

分析了在汕头大学医学院接受 SLN 活检的 2217 例 BC 患者的数据,其中 634 例患者的 SLN 阳性。患者分为 SLN 阳性数≤2 和≥3 组。我们应用 9 种 ML 算法预测非 SLN 转移。使用 ROC 曲线、精准度-召回曲线和校准曲线评估模型性能。决策曲线分析(DCA)评估了模型的临床实用性。

结果

随机森林(RF)模型在训练集和验证集上的 AUC 分别为 0.987 和 0.828,显示出卓越的预测性能。关键预测特征包括阳性 SLN 的大小、肿瘤大小、SLN 数量和 ER 状态。在外部验证中,RF 模型的 AUC 为 0.870,表现出稳健的预测能力。

结论

开发的 RF 模型能够准确预测 3 个或以上阳性 SLN 的 BC 患者中的非 SLN 转移,提示通过应用额外的腋窝放疗,可能在选择的患者中避免 ALND。这种方法可以减少术后并发症的发生率,提高患者的生活质量。需要前瞻性临床试验进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b53d/11370100/acf7f7d47f9e/12885_2024_12870_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验