Suppr超能文献

动态接触网络中的易感-感染-康复流行病

Susceptible-infected-recovered epidemics in dynamic contact networks.

作者信息

Volz Erik, Meyers Lauren Ancel

机构信息

Department of Integrative Biology, University of Texas at Austin, 1 University Station, C0930, Austin, TX 78712, USA.

出版信息

Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. doi: 10.1098/rspb.2007.1159.

Abstract

Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.

摘要

人群中的接触模式从根本上影响传染病的传播。当前用于网络流行病学预测的数学方法大多假定个体之间的接触是固定的,至少在疫情爆发期间如此。实际上,接触模式可能相当多变,个体经常建立和断绝社会关系或性关系。在此,我们开发了一种数学方法来预测动态网络中的疾病传播,其中每个个体都有一个特征行为(典型接触数),但其接触对象的身份会随时间变化。我们表明,动态接触模式塑造流行病学动态的方式无法在静态网络模型或质量作用模型中得到充分体现。我们的新模型使用一个混合参数在静态网络模型和质量作用模型之间进行平滑插值,从而在不同类别的流行病学模型之间架起一座桥梁。利用来自亚特兰大一所高中的流行病学和性接触数据,我们展示了该方法在预测和控制性传播疾病爆发方面的应用。

相似文献

1
Susceptible-infected-recovered epidemics in dynamic contact networks.
Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. doi: 10.1098/rspb.2007.1159.
2
Dynamic vs. static social networks in models of parasite transmission: predicting Cryptosporidium spread in wild lemurs.
J Anim Ecol. 2017 May;86(3):419-433. doi: 10.1111/1365-2656.12617. Epub 2017 Jan 31.
3
Comparison of sexual mixing patterns for syphilis in endemic and outbreak settings.
Sex Transm Dis. 2011 May;38(5):378-84. doi: 10.1097/OLQ.0b013e318203e2ef.
4
Building epidemiological models from R0: an implicit treatment of transmission in networks.
Proc Biol Sci. 2007 Feb 22;274(1609):505-12. doi: 10.1098/rspb.2006.0057.
5
Epidemic thresholds in dynamic contact networks.
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.
6
Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination.
J Anim Ecol. 2015 Nov;84(6):1720-31. doi: 10.1111/1365-2656.12422. Epub 2015 Aug 21.
7
Space and contact networks: capturing the locality of disease transmission.
J R Soc Interface. 2006 Aug 22;3(9):483-93. doi: 10.1098/rsif.2005.0105.
8
The influence of empirical contact networks on modelling diseases in cattle.
Epidemics. 2012 Aug;4(3):117-23. doi: 10.1016/j.epidem.2012.04.003. Epub 2012 May 5.
9
The dynamics of transmission and the dynamics of networks.
J Anim Ecol. 2017 May;86(3):415-418. doi: 10.1111/1365-2656.12659.
10
Predicting epidemics on directed contact networks.
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.

引用本文的文献

1
Strength and weakness of disease-induced herd immunity in networks.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421460122. doi: 10.1073/pnas.2421460122. Epub 2025 Jul 10.
2
A novel approach to estimating through infection networks: understanding regional transmission dynamics of COVID-19.
Front Public Health. 2025 Jun 18;13:1586786. doi: 10.3389/fpubh.2025.1586786. eCollection 2025.
4
Static graph approximations of dynamic contact networks for epidemic forecasting.
Sci Rep. 2024 May 22;14(1):11696. doi: 10.1038/s41598-024-62271-0.
6
Staged HIV transmission and treatment in a dynamic model with long-term partnerships.
J Math Biol. 2023 Apr 13;86(5):74. doi: 10.1007/s00285-023-01885-w.
8
Percolation across households in mechanistic models of non-pharmaceutical interventions in SARS-CoV-2 disease dynamics.
Epidemics. 2022 Jun;39:100551. doi: 10.1016/j.epidem.2022.100551. Epub 2022 Mar 12.
9
Revealing mechanisms of infectious disease spread through empirical contact networks.
PLoS Comput Biol. 2021 Dec 20;17(12):e1009604. doi: 10.1371/journal.pcbi.1009604. eCollection 2021 Dec.

本文引用的文献

1
Exact solution for the time evolution of network rewiring models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 2):056101. doi: 10.1103/PhysRevE.75.056101. Epub 2007 May 2.
2
SIR dynamics in random networks with heterogeneous connectivity.
J Math Biol. 2008 Mar;56(3):293-310. doi: 10.1007/s00285-007-0116-4. Epub 2007 Aug 1.
3
Exploring the assortativity-clustering space of a network's degree sequence.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046111. doi: 10.1103/PhysRevE.75.046111. Epub 2007 Apr 19.
4
HIV and African Americans in the southern United States: sexual networks and social context.
Sex Transm Dis. 2006 Jul;33(7 Suppl):S39-45. doi: 10.1097/01.olq.0000228298.07826.68.
6
Predicting epidemics on directed contact networks.
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.
7
Multiscale, resurgent epidemics in a hierarchical metapopulation model.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11157-62. doi: 10.1073/pnas.0501226102. Epub 2005 Jul 29.
8
Dynamical patterns of epidemic outbreaks in complex heterogeneous networks.
J Theor Biol. 2005 Jul 21;235(2):275-88. doi: 10.1016/j.jtbi.2005.01.011.
9
Host immunity and synchronized epidemics of syphilis across the United States.
Nature. 2005 Jan 27;433(7024):417-21. doi: 10.1038/nature03072.
10
Network theory and SARS: predicting outbreak diversity.
J Theor Biol. 2005 Jan 7;232(1):71-81. doi: 10.1016/j.jtbi.2004.07.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验