Suppr超能文献

动态接触网络中的易感-感染-康复流行病

Susceptible-infected-recovered epidemics in dynamic contact networks.

作者信息

Volz Erik, Meyers Lauren Ancel

机构信息

Department of Integrative Biology, University of Texas at Austin, 1 University Station, C0930, Austin, TX 78712, USA.

出版信息

Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. doi: 10.1098/rspb.2007.1159.

Abstract

Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.

摘要

人群中的接触模式从根本上影响传染病的传播。当前用于网络流行病学预测的数学方法大多假定个体之间的接触是固定的,至少在疫情爆发期间如此。实际上,接触模式可能相当多变,个体经常建立和断绝社会关系或性关系。在此,我们开发了一种数学方法来预测动态网络中的疾病传播,其中每个个体都有一个特征行为(典型接触数),但其接触对象的身份会随时间变化。我们表明,动态接触模式塑造流行病学动态的方式无法在静态网络模型或质量作用模型中得到充分体现。我们的新模型使用一个混合参数在静态网络模型和质量作用模型之间进行平滑插值,从而在不同类别的流行病学模型之间架起一座桥梁。利用来自亚特兰大一所高中的流行病学和性接触数据,我们展示了该方法在预测和控制性传播疾病爆发方面的应用。

相似文献

5
Epidemic thresholds in dynamic contact networks.动态接触网络中的流行阈值。
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.
8
The influence of empirical contact networks on modelling diseases in cattle.经验接触网络对牛病建模的影响。
Epidemics. 2012 Aug;4(3):117-23. doi: 10.1016/j.epidem.2012.04.003. Epub 2012 May 5.
9
The dynamics of transmission and the dynamics of networks.传播动力学与网络动力学。
J Anim Ecol. 2017 May;86(3):415-418. doi: 10.1111/1365-2656.12659.
10
Predicting epidemics on directed contact networks.预测有向接触网络上的流行病。
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.

引用本文的文献

1
Strength and weakness of disease-induced herd immunity in networks.疾病诱导的网络群体免疫的优势与劣势
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421460122. doi: 10.1073/pnas.2421460122. Epub 2025 Jul 10.
9
Revealing mechanisms of infectious disease spread through empirical contact networks.通过经验性接触网络揭示传染病传播的机制。
PLoS Comput Biol. 2021 Dec 20;17(12):e1009604. doi: 10.1371/journal.pcbi.1009604. eCollection 2021 Dec.

本文引用的文献

1
Exact solution for the time evolution of network rewiring models.网络重新布线模型时间演化的精确解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 2):056101. doi: 10.1103/PhysRevE.75.056101. Epub 2007 May 2.
2
SIR dynamics in random networks with heterogeneous connectivity.具有异质连通性的随机网络中的SIR动力学。
J Math Biol. 2008 Mar;56(3):293-310. doi: 10.1007/s00285-007-0116-4. Epub 2007 Aug 1.
3
Exploring the assortativity-clustering space of a network's degree sequence.探索网络度序列的 assortativity-聚类空间。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046111. doi: 10.1103/PhysRevE.75.046111. Epub 2007 Apr 19.
6
Predicting epidemics on directed contact networks.预测有向接触网络上的流行病。
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.
7
Multiscale, resurgent epidemics in a hierarchical metapopulation model.分层集合种群模型中的多尺度、复苏型流行病
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11157-62. doi: 10.1073/pnas.0501226102. Epub 2005 Jul 29.
10
Network theory and SARS: predicting outbreak diversity.网络理论与非典:预测疫情多样性。
J Theor Biol. 2005 Jan 7;232(1):71-81. doi: 10.1016/j.jtbi.2004.07.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验