Suppr超能文献

临界热极限取决于方法学背景。

Critical thermal limits depend on methodological context.

作者信息

Terblanche John S, Deere Jacques A, Clusella-Trullas Susana, Janion Charlene, Chown Steven L

机构信息

Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, Republic of South Africa.

出版信息

Proc Biol Sci. 2007 Dec 7;274(1628):2935-42. doi: 10.1098/rspb.2007.0985.

Abstract

A full-factorial study of the effects of rates of temperature change and start temperatures was undertaken for both upper and lower critical thermal limits (CTLs) using the tsetse fly, Glossina pallidipes. Results show that rates of temperature change and start temperatures have highly significant effects on CTLs, although the duration of the experiment also has a major effect. Contrary to a widely held expectation, slower rates of temperature change (i.e. longer experimental duration) resulted in poorer thermal tolerance at both high and low temperatures. Thus, across treatments, a negative relationship existed between duration and upper CTL while a positive relationship existed between duration and lower CTL. Most importantly, for predicting tsetse distribution, G. pallidipes suffer loss of function at less severe temperatures under the most ecologically relevant experimental conditions for upper (0.06 degrees C min(-1); 35 degrees C start temperature) and lower CTL (0.06 degrees C min(-1); 24 degrees C start temperature). This suggests that the functional thermal range of G. pallidipes in the wild may be much narrower than previously suspected, approximately 20-40 degrees C, and highlights their sensitivity to even moderate temperature variation. These effects are explained by limited plasticity of CTLs in this species over short time scales. The results of the present study have broad implications for understanding temperature tolerance in these and other terrestrial arthropods.

摘要

利用采采蝇(Glossina pallidipes)对上临界热极限(CTL)和下临界热极限进行了一项关于温度变化速率和起始温度影响的全因子研究。结果表明,温度变化速率和起始温度对CTL有极显著影响,尽管实验持续时间也有重大影响。与普遍预期相反,温度变化速率较慢(即实验持续时间较长)导致在高温和低温下的热耐受性较差。因此,在所有处理中,持续时间与上临界热极限之间存在负相关关系,而持续时间与下临界热极限之间存在正相关关系。最重要的是,对于预测采采蝇的分布,在最符合生态相关的上临界热极限(0.06℃ min⁻¹;起始温度35℃)和下临界热极限(0.06℃ min⁻¹;起始温度24℃)实验条件下,采采蝇在不太极端的温度下就会出现功能丧失。这表明野生采采蝇的功能热范围可能比之前怀疑的要窄得多,大约在20 - 40℃之间,并突出了它们对即使是适度温度变化的敏感性。这些影响可以通过该物种在短时间尺度上CTL的可塑性有限来解释。本研究结果对理解这些以及其他陆生节肢动物的温度耐受性具有广泛的意义。

相似文献

1
Critical thermal limits depend on methodological context.
Proc Biol Sci. 2007 Dec 7;274(1628):2935-42. doi: 10.1098/rspb.2007.0985.
6
Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
Comp Biochem Physiol A Mol Integr Physiol. 2016 Feb;192:64-78. doi: 10.1016/j.cbpa.2015.10.020. Epub 2015 Oct 24.
7
Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae).
J Insect Physiol. 2011 Jan;57(1):108-17. doi: 10.1016/j.jinsphys.2010.09.013. Epub 2010 Oct 15.
8
The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector.
J Exp Biol. 2016 Jun 15;219(Pt 12):1893-902. doi: 10.1242/jeb.138669. Epub 2016 Apr 8.
9
The analysis and interpretation of critical temperatures.
J Exp Biol. 2018 Jun 27;221(Pt 12):jeb167858. doi: 10.1242/jeb.167858.

引用本文的文献

2
Thermal Tolerance in the Cellophane Bee Reflects Early Spring Adaptation and Is Independent of Body Size and Sex.
Ecol Evol. 2025 Aug 12;15(8):e71983. doi: 10.1002/ece3.71983. eCollection 2025 Aug.
3
Geographic variation in thermal tolerance of western corn rootworm.
Sci Rep. 2025 Jul 18;15(1):26027. doi: 10.1038/s41598-025-08768-8.
6
Heat limits scale with metabolism in ectothermic animals.
J Anim Ecol. 2025 Jun;94(6):1307-1316. doi: 10.1111/1365-2656.70042. Epub 2025 May 12.
8
Local conditions drive interpopulation variation in field-based critical thermal maximum of brook trout.
Conserv Physiol. 2024 Dec 26;12(1):coae086. doi: 10.1093/conphys/coae086. eCollection 2024.
9
Warm acclimation reduces the sensitivity of Drosophila species to heat stress at ecologically relevant scales.
J Anim Ecol. 2025 May;94(5):896-907. doi: 10.1111/1365-2656.70018. Epub 2025 Mar 26.
10
Evolutionary adaptation under climate change: sp. demonstrates potential to adapt to warming.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2418199122. doi: 10.1073/pnas.2418199122. Epub 2025 Jan 7.

本文引用的文献

1
PHYLOGENY AND COADAPTATION OF THERMAL PHYSIOLOGY IN LIZARDS: A REANALYSIS.
Evolution. 1991 Dec;45(8):1969-1975. doi: 10.1111/j.1558-5646.1991.tb02703.x.
2
PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS.
Evolution. 1987 Sep;41(5):1098-1115. doi: 10.1111/j.1558-5646.1987.tb05879.x.
3
Are mountain passes higher in the tropics? Janzen's hypothesis revisited.
Integr Comp Biol. 2006 Feb;46(1):5-17. doi: 10.1093/icb/icj003. Epub 2006 Jan 6.
4
Physiological Diversity in Insects: Ecological and Evolutionary Contexts.
Adv In Insect Phys. 2006;33:50-152. doi: 10.1016/S0065-2806(06)33002-0.
6
A rapid cold-hardening process in insects.
Science. 1987 Dec 4;238(4832):1415-7. doi: 10.1126/science.238.4832.1415.
8
The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
J Insect Physiol. 2006 Oct;52(10):1027-33. doi: 10.1016/j.jinsphys.2006.07.001. Epub 2006 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验