Suppr超能文献

布朗分子机器的设计原理:如何在糖浆中游泳以及在飓风中行走。

Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane.

作者信息

Astumian R Dean

机构信息

Department of Physics, University of Maine, Orono, Maine 04469-5709, USA.

出版信息

Phys Chem Chem Phys. 2007 Oct 7;9(37):5067-83. doi: 10.1039/b708995c. Epub 2007 Aug 28.

Abstract

Protein molecular motors-perfected over the course of millions of years of evolution-play an essential role in moving and assembling biological structures. Recently chemists have been able to synthesize molecules that emulate in part the remarkable capabilities of these biomolecular motors (for extensive reviews see the recent papers: E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed., 2006, 46, 72-191; W. R. Browne and B. L. Feringa, Nat. Nanotechnol., 2006, 1, 25-35; M. N. Chatterjee, E. R. Kay and D. A. Leigh, J. Am. Chem. Soc., 2006, 128, 4058-4073; G. S. Kottas, L. I. Clarke, D. Horinek and J. Michl, Chem. Rev., 2005, 105, 1281-1376; M. A. Garcia-Garibay, Proc. Natl. Acad. Sci., U. S. A., 2005, 102, 10771-10776)). Like their biological counterparts, many of these synthetic machines function in an environment where viscous forces dominate inertia-to move they must "swim in molasses". Further, the thermal noise power exchanged reversibly between the motor and its environment is many orders of magnitude greater than the power provided by the chemical fuel to drive directed motion. One might think that moving in a specific direction would be as difficult as walking in a hurricane. Yet biomolecular motors (and increasingly, synthetic motors) move and accomplish their function with almost deterministic precision. In this Perspective we will investigate the physical principles that govern nanoscale systems at the single molecule level and how these principles can be useful in designing synthetic molecular machines.

摘要

蛋白质分子马达——在数百万年的进化过程中不断完善——在生物结构的移动和组装中发挥着至关重要的作用。最近,化学家们已经能够合成一些分子,这些分子部分模仿了这些生物分子马达的非凡能力(有关广泛综述,请参阅最近的论文:E. R. 凯、D. A. 利和 F. 泽贝托,《德国应用化学》,国际版,2006 年,46 卷,72 - 191 页;W. R. 布朗和 B. L. 费林加,《自然·纳米技术》,2006 年,1 卷,25 - 35 页;M. N. 查特吉、E. R. 凯和 D. A. 利,《美国化学会志》,2006 年,128 卷,4058 - 4073 页;G. S. 科塔斯、L. I. 克拉克、D. 霍里内克和 J. 米赫尔,《化学评论》,2005 年,105 卷,1281 - 1376 页;M. A. 加西亚 - 加里贝,《美国国家科学院院刊》,2005 年,102 卷,10771 - 10776 页)。与它们的生物同类一样,许多这类合成机器在粘性力主导惯性的环境中运行——为了移动,它们必须“在糖浆中游泳”。此外,马达与其环境之间可逆交换的热噪声功率比化学燃料提供的用于驱动定向运动的功率大许多个数量级。人们可能会认为在特定方向上移动就像在飓风中行走一样困难。然而,生物分子马达(以及越来越多的合成马达)以几乎确定性的精度移动并完成其功能。在这篇展望文章中,我们将研究在单分子水平上支配纳米尺度系统的物理原理,以及这些原理如何有助于设计合成分子机器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验