Zoll Jan, Heus Hans A, van Kuppeveld Frank J M, Melchers Willem J G
Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
Virus Res. 2009 Feb;139(2):209-16. doi: 10.1016/j.virusres.2008.07.014. Epub 2008 Aug 30.
Essential processes in living cells are carried out by large complex assemblies, which typically consist of a large number of proteins and frequently also contain nucleic acids, mostly RNA [Alberts, B., 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294]. These large biomolecular complexes carry out biological processes in highly sophisticated ways: molecules do not move around randomly in the cell and interact by chance, but are guided to these "macromolecular machines", in which the number of possible collisions is restricted to a few possibilities, based, e.g., on the specificity of protein-RNA recognition. While the coding capacity of RNA lies within its sequence, the shape of an RNA molecule determines other functionalities such as stability, intra- and intermolecular interactions, catalytic activity, regulation of cellular processes, etc. [Doudna, J.A., 2000. Structural genomics of RNA. Nat. Struct. Biol. 7, 954-956; Cech, T.R. 2000. Structural biology. The ribosome is a ribozyme. Science 289, 878-879]. RNA structures in macromolecular machines are important features in assembly, target recognition and activity. Viral RNA molecules contain cis- and/or trans-acting control elements that, as exemplified by internal ribosomal entry sites and origins of genome replication, consist of complex multidomain structures [Andino, R., Rieckhof, G.E., Achacoso, P.L., Baltimore D., 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 12, 3587-3598; Melchers, W.J.G., Hoenderop, J.G.J., Bruins Slot, H.J., Pleij, C.W.A., Pilipenko, E.V., Agol, V.I., Galama, J.M.D., 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71, 686-696]. The formation of these structures is involved in the specific recognition of ligands or serves to support the structural integrity of the whole element. The replication of the enterovirus RNA is carried out by a large biomolecular complex formed by cis-acting RNA elements found in the 5'- and 3'-UTR of the virus genome and several cellular and viral proteins. This review will focus on RNA elements in the 3'-UTR of enteroviruses.
活细胞中的基本过程是由大型复杂的组件执行的,这些组件通常由大量蛋白质组成,并且常常还包含核酸,主要是RNA [阿尔伯茨,B.,1998年。作为蛋白质机器集合的细胞:培养下一代分子生物学家。《细胞》92卷,291 - 294页]。这些大型生物分子复合物以高度复杂的方式执行生物过程:分子并非在细胞内随机移动并偶然相互作用,而是被引导至这些“大分子机器”,在其中,例如基于蛋白质 - RNA识别的特异性,可能的碰撞数量被限制为少数几种可能性。虽然RNA的编码能力在于其序列,但RNA分子的形状决定了其他功能,如稳定性、分子内和分子间相互作用、催化活性、细胞过程的调节等[杜德纳,J.A.,2000年。RNA的结构基因组学。《自然结构生物学》7卷,954 - 956页;切赫,T.R.,2000年。结构生物学。核糖体是一种核酶。《科学》289卷,878 - 879页]。大分子机器中的RNA结构是组装、靶标识别和活性的重要特征。病毒RNA分子包含顺式和/或反式作用控制元件,以内核糖体进入位点和基因组复制起点为例,它们由复杂的多结构域结构组成[安迪诺,R.,里克霍夫,G.E.,阿查科索,P.L.,巴尔的摩,D.,1993年。脊髓灰质炎病毒RNA合成利用围绕病毒RNA 5'端形成的RNP复合物。《欧洲分子生物学组织杂志》12卷,3587 - 3598页;梅尔切斯,W.J.G.,洪德洛普,J.G.J.,布鲁因斯·斯洛特,H.J.,普莱伊,C.W.A.,皮利彭科,E.V.,阿戈尔,V.I.,加拉马,J.M.D.,1997年。柯萨奇B病毒3'非翻译区中两个主要发夹环的“亲吻”是负链RNA合成所需复制起点的基本结构特征。《病毒学杂志》71卷,686 - 696页]。这些结构的形成涉及配体的特异性识别或用于支持整个元件的结构完整性。肠道病毒RNA的复制是由病毒基因组5'和3'非翻译区中发现的顺式作用RNA元件以及几种细胞和病毒蛋白形成的大型生物分子复合物进行的。本综述将聚焦于肠道病毒3'非翻译区中的RNA元件。