Suppr超能文献

乳腺X线摄影中的信息论计算机辅助检测系统:基于熵的索引以实现计算效率和稳健性能。

Information-theoretic CAD system in mammography: entropy-based indexing for computational efficiency and robust performance.

作者信息

Tourassi Georgia D, Harrawood Brian, Singh Swatee, Lo Joseph Y

机构信息

Digital Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705, USA.

出版信息

Med Phys. 2007 Aug;34(8):3193-204. doi: 10.1118/1.2751075.

Abstract

We have previously presented a knowledge-based computer-assisted detection (KB-CADe) system for the detection of mammographic masses. The system is designed to compare a query mammographic region with mammographic templates of known ground truth. The templates are stored in an adaptive knowledge database. Image similarity is assessed with information theoretic measures (e.g., mutual information) derived directly from the image histograms. A previous study suggested that the diagnostic performance of the system steadily improves as the knowledge database is initially enriched with more templates. However, as the database increases in size, an exhaustive comparison of the query case with each stored template becomes computationally burdensome. Furthermore, blind storing of new templates may result in redundancies that do not necessarily improve diagnostic performance. To address these concerns we investigated an entropy-based indexing scheme for improving the speed of analysis and for satisfying database storage restrictions without compromising the overall diagnostic performance of our KB-CADe system. The indexing scheme was evaluated on two different datasets as (i) a search mechanism to sort through the knowledge database, and (ii) a selection mechanism to build a smaller, concise knowledge database that is easier to maintain but still effective. There were two important findings in the study. First, entropy-based indexing is an effective strategy to identify fast a subset of templates that are most relevant to a given query. Only this subset could be analyzed in more detail using mutual information for optimized decision making regarding the query. Second, a selective entropy-based deposit strategy may be preferable where only high entropy cases are maintained in the knowledge database. Overall, the proposed entropy-based indexing scheme was shown to reduce the computational cost of our KB-CADe system by 55% to 80% while maintaining the system's diagnostic performance.

摘要

我们之前提出了一种基于知识的计算机辅助检测(KB-CADe)系统,用于检测乳腺钼靶肿块。该系统旨在将查询的乳腺钼靶区域与已知真实情况的乳腺钼靶模板进行比较。这些模板存储在一个自适应知识数据库中。图像相似度通过直接从图像直方图得出的信息论度量(例如互信息)进行评估。先前的一项研究表明,随着知识数据库最初用更多模板进行充实,该系统的诊断性能会稳步提高。然而,随着数据库规模的增大,将查询病例与每个存储模板进行详尽比较在计算上变得繁重。此外,盲目存储新模板可能会导致冗余,而这不一定能提高诊断性能。为了解决这些问题,我们研究了一种基于熵的索引方案,以提高分析速度并满足数据库存储限制,同时不影响我们的KB-CADe系统的整体诊断性能。该索引方案在两个不同的数据集上进行了评估,一是作为一种搜索机制来梳理知识数据库,二是作为一种选择机制来构建一个更小、更简洁且更易于维护但仍然有效的知识数据库。该研究有两个重要发现。首先,基于熵的索引是一种有效的策略,能够快速识别与给定查询最相关的模板子集。只有这个子集可以使用互信息进行更详细的分析,以便对查询做出优化决策。其次,在知识数据库中仅保留高熵病例的情况下,基于熵的选择性存储策略可能更可取。总体而言,所提出的基于熵的索引方案在保持系统诊断性能的同时,将我们的KB-CADe系统的计算成本降低了55%至80%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验