Suppr超能文献

基于互信息的乳腺肿块检测模板匹配方案:从乳腺 X 线摄影术到数字乳腺断层合成术。

Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis.

机构信息

Department of Radiology, Duke University Medical Center, 2424 Erwin Rd., Suite 302, Durham, NC 27705, USA.

出版信息

J Biomed Inform. 2011 Oct;44(5):815-23. doi: 10.1016/j.jbi.2011.04.008. Epub 2011 May 1.

Abstract

Development of a computational decision aid for a new medical imaging modality typically is a long and complicated process. It consists of collecting data in the form of images and annotations, development of image processing and pattern recognition algorithms for analysis of the new images and finally testing of the resulting system. Since new imaging modalities are developed more rapidly than ever before, any effort for decreasing the time and cost of this development process could result in maximizing the benefit of the new imaging modality to patients by making the computer aids quickly available to radiologists that interpret the images. In this paper, we make a step in this direction and investigate the possibility of translating the knowledge about the detection problem from one imaging modality to another. Specifically, we present a computer-aided detection (CAD) system for mammographic masses that uses a mutual information-based template matching scheme with intelligently selected templates. We presented principles of template matching with mutual information for mammography before. In this paper, we present an implementation of those principles in a complete computer-aided detection system. The proposed system, through an automatic optimization process, chooses the most useful templates (mammographic regions of interest) using a large database of previously collected and annotated mammograms. Through this process, the knowledge about the task of detecting masses in mammograms is incorporated in the system. Then, we evaluate whether our system developed for screen-film mammograms can be successfully applied not only to other mammograms but also to digital breast tomosynthesis (DBT) reconstructed slices without adding any DBT cases for training. Our rationale is that since mutual information is known to be a robust inter-modality image similarity measure, it has high potential of transferring knowledge between modalities in the context of the mass detection task. Experimental evaluation of the system on mammograms showed competitive performance compared to other mammography CAD systems recently published in the literature. When the system was applied "as-is" to DBT, its performance was notably worse than that for mammograms. However, with a simple additional preprocessing step, the performance of the system reached levels similar to that obtained for mammograms. In conclusion, the presented CAD system not only performed competitively on screen-film mammograms but it also performed robustly on DBT showing that direct transfer of knowledge across breast imaging modalities for mass detection is in fact possible.

摘要

开发新的医学成像模式的计算决策辅助工具通常是一个漫长而复杂的过程。它包括以图像和注释的形式收集数据,开发用于分析新图像的图像处理和模式识别算法,最后测试所得到的系统。由于新的成像模式比以往任何时候都发展得更快,因此任何减少这一开发过程的时间和成本的努力都可以通过使计算机辅助工具尽快提供给解释图像的放射科医生,从而使新的成像模式最大限度地使患者受益。在本文中,我们朝着这个方向迈出了一步,研究了将检测问题的知识从一种成像模式转换到另一种成像模式的可能性。具体来说,我们提出了一种用于乳腺肿块的计算机辅助检测(CAD)系统,该系统使用基于互信息的模板匹配方案和智能选择的模板。我们之前介绍过基于互信息的乳腺模板匹配原理。在本文中,我们提出了一种完整的计算机辅助检测系统的实现。该系统通过自动优化过程,使用先前收集和注释的大量乳腺图像数据库来选择最有用的模板(乳腺感兴趣区域)。通过这个过程,系统中包含了关于检测乳腺肿块任务的知识。然后,我们评估我们为屏片乳腺摄影开发的系统不仅可以成功地应用于其他乳腺摄影,还可以应用于数字乳腺断层合成(DBT)重建切片,而无需添加任何用于训练的 DBT 病例。我们的基本原理是,由于互信息被认为是一种稳健的跨模态图像相似性度量,因此它具有在肿块检测任务的背景下在模态之间传递知识的高潜力。该系统在乳腺摄影中的实验评估结果与文献中最近发表的其他乳腺摄影 CAD 系统相比具有竞争力。当该系统“原样”应用于 DBT 时,其性能明显逊于乳腺摄影。然而,通过一个简单的附加预处理步骤,系统的性能达到了与乳腺摄影相似的水平。总之,所提出的 CAD 系统不仅在屏片乳腺摄影中表现出竞争力,而且在 DBT 中表现出稳健性,这表明在肿块检测方面,跨乳腺成像模式的知识直接转移是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验