Suppr超能文献

乳腺钼靶肿块的计算机辅助检测:一种基于互信息的模板匹配方案。

Computer-assisted detection of mammographic masses: a template matching scheme based on mutual information.

作者信息

Tourassi Georgia D, Vargas-Voracek Rene, Catarious David M, Floyd Carey E

机构信息

Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Med Phys. 2003 Aug;30(8):2123-30. doi: 10.1118/1.1589494.

Abstract

The purpose of this study was to develop a knowledge-based scheme for the detection of masses on digitized screening mammograms. The computer-assisted detection (CAD) scheme utilizes a knowledge databank of mammographic regions of interest (ROIs) with known ground truth. Each ROI in the databank serves as a template. The CAD system follows a template matching approach with mutual information as the similarity metric to determine if a query mammographic ROI depicts a true mass. Based on their information content, all similar ROIs in the databank are retrieved and rank-ordered. Then, a decision index is calculated based on the query's best matches. The decision index effectively combines the similarity indices and ground truth of the best-matched templates into a prediction regarding the presence of a mass in the query mammographic ROI. The system was developed and evaluated using a database of 1465 ROIs extracted from the Digital Database for Screening Mammography. There were 809 ROIs with confirmed masses (455 malignant and 354 benign) and 656 normal ROIs. CAD performance was assessed using a leave-one-out sampling scheme and Receiver Operating Characteristics analysis. Depending on the formulation of the decision index, CAD performance as high as A(zeta) = 0.87 +/- 0.01 was achieved. The CAD detection rate was consistent for both malignant and benign masses. In addition, the impact of certain implementation parameters on the detection accuracy and speed of the proposed CAD scheme was studied in more detail.

摘要

本研究的目的是开发一种基于知识的方案,用于在数字化乳腺筛查钼靶图像上检测肿块。计算机辅助检测(CAD)方案利用了具有已知真实情况的乳腺钼靶感兴趣区域(ROI)的知识数据库。数据库中的每个ROI都作为一个模板。CAD系统采用以互信息为相似性度量的模板匹配方法,以确定查询的乳腺钼靶ROI是否描绘了一个真实的肿块。根据其信息内容,检索数据库中所有相似的ROI并进行排序。然后,根据查询的最佳匹配计算决策指数。该决策指数有效地将最佳匹配模板的相似性指数和真实情况结合起来,形成关于查询乳腺钼靶ROI中肿块存在与否的预测。该系统是使用从数字化乳腺筛查数据库中提取的1465个ROI的数据库开发和评估的。有809个ROI被确认为有肿块(455个恶性和354个良性)以及656个正常ROI。使用留一法抽样方案和接收器操作特性分析来评估CAD的性能。根据决策指数的公式,CAD性能高达A(zeta)=0.87±0.01。CAD对恶性和良性肿块的检测率是一致的。此外,还更详细地研究了某些实施参数对所提出的CAD方案的检测准确性和速度的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验