Hofferberth S, Lesanovsky I, Fischer B, Schumm T, Schmiedmayer J
Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany.
Nature. 2007 Sep 20;449(7160):324-7. doi: 10.1038/nature06149.
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.
低维系统为多体量子物理提供了绝佳示例。对于一维(1D)系统,卢廷格液体方法有助于深入理解其普遍性质。在弱相互作用和强相互作用区域,人们对平衡态已经有了很多了解。然而,探究达到这种平衡态的动力学过程仍然是一项挑战。在此,我们展示了对孤立和耦合简并一维玻色气体中相干动力学的直接实验研究。利用动态分裂在相位相干态下创建两个一维系统。通过随后观察到的干涉图样的局部相移揭示相干性的时间演化。观察到完全孤立的一维玻色气体呈现出普遍的亚指数相干衰减,与近期预测结果高度吻合。对于两个耦合的一维玻色气体,如博戈留波夫方法所预测的那样,观察到相干因子趋近于一个非零平衡值。这种耦合系统向有限相干的衰减相当于通过注入使两台激光器锁相的物质波等效情况。超流体的非平衡动力学在广泛的物理系统中都起着重要作用,例如超导体、量子霍尔系统、超流氦和自旋系统。我们对相干动力学的实验研究表明,一维玻色气体非常适合用于研究这类现象。