Kaltenbrunner Andreas, Gómez Vicenç, López Vicente
Neural Comput. 2007 Nov;19(11):3011-50. doi: 10.1162/neco.2007.19.11.3011.
An ensemble of stochastic nonleaky integrate-and-fire neurons with global, delayed, and excitatory coupling and a small refractory period is analyzed. Simulations with adiabatic changes of the coupling strength indicate the presence of a phase transition accompanied by a hysteresis around a critical coupling strength. Below the critical coupling production of spikes in the ensemble is governed by the stochastic dynamics, whereas for coupling greater than the critical value, the stochastic dynamics loses its influence and the units organize into several clusters with self-sustained activity. All units within one cluster spike in unison, and the clusters themselves are phase-locked. Theoretical analysis leads to upper and lower bounds for the average interspike interval of the ensemble valid for all possible coupling strengths. The bounds allow calculating the limit behavior for large ensembles and characterize the phase transition analytically. These results may be extensible to pulse-coupled oscillators.
对具有全局、延迟和兴奋性耦合以及小不应期的随机无泄漏积分发放神经元集合进行了分析。耦合强度绝热变化的模拟表明,在临界耦合强度附近存在伴有滞后现象的相变。低于临界耦合时,集合中脉冲的产生由随机动力学控制,而对于大于临界值的耦合,随机动力学失去其影响,单元组织成具有自持活动的几个簇。一个簇内的所有单元同步发放脉冲,并且这些簇本身是锁相的。理论分析得出了对于所有可能耦合强度都有效的集合平均脉冲间隔的上下界。这些界限允许计算大集合的极限行为,并通过分析表征相变。这些结果可能可扩展到脉冲耦合振荡器。