Suppr超能文献

是否激发:概率激发神经元模型。

To spike or not to spike: a probabilistic spiking neuron model.

机构信息

Knowledge Engineering and Discovery Research Institute, KEDRI, Auckland University of Technology, Auckland, New Zealand.

出版信息

Neural Netw. 2010 Jan;23(1):16-9. doi: 10.1016/j.neunet.2009.08.010. Epub 2009 Sep 6.

Abstract

Spiking neural networks (SNN) are promising artificial neural network (ANN) models as they utilise information representation as trains of spikes, that adds new dimensions of time, frequency and phase to the structure and the functionality of ANN. The current SNN models though are deterministic, that restricts their applications for large scale engineering and cognitive modelling of stochastic processes. This paper proposes a novel probabilistic spiking neuron model (pSNM) and suggests ways of building pSNN for a wide range of applications including classification, string pattern recognition and associative memory. It also extends previously published computational neurogenetic models.

摘要

尖峰神经网络 (SNN) 是一种很有前途的人工神经网络 (ANN) 模型,因为它们利用尖峰序列来表示信息,从而为 ANN 的结构和功能增加了时间、频率和相位的新维度。然而,当前的 SNN 模型是确定性的,这限制了它们在大规模工程和随机过程的认知建模中的应用。本文提出了一种新的概率尖峰神经元模型 (pSNM),并为包括分类、字符串模式识别和联想记忆在内的广泛应用提出了构建 pSNN 的方法。它还扩展了以前发表的计算神经遗传模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验