Suppr超能文献

血管平滑肌的多尺度与多轴力学

Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle.

作者信息

Murtada Sae-Ii, Humphrey Jay D, Holzapfel Gerhard A

机构信息

Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Biomedical Engineering, Yale University, New Haven, Connecticut.

Department of Biomedical Engineering, Yale University, New Haven, Connecticut.

出版信息

Biophys J. 2017 Aug 8;113(3):714-727. doi: 10.1016/j.bpj.2017.06.017.

Abstract

Mathematical models can facilitate an integrative understanding of the complexity underlying biological structure and function, but they must be informed and validated by empirical data. Uniaxial contraction of an arterial ring is a well-used in vitro approach for studying characteristics of smooth muscle contractility even though this experimental arrangement does not mimic the in vivo vascular geometry or loading. In contrast, biaxial contraction of an inflated and axially extended excised vessel provides broader information, both passive and active, under more realistic conditions. Few investigations have compared these two in vitro approaches directly, namely how their results overlap, how they differ, or if each provides unique complementary information. Toward this end, we present, to our knowledge, a new multiscale mathematical model of arterial contractility accounting for structural and functional constituents at molecular, cellular, and tissue levels. The artery is assumed to be a thick-walled incompressible cylinder described by an anisotropic model of the extracellular matrix and, to our knowledge, novel model of smooth muscle contractility. The latter includes a 3D structural sensitivity to deformation, including microscale muscle filament overlap and filament lattice spacing. The overall model captures uniaxial and biaxial experimental contraction data, which was not possible when accounting for filament overlap alone. The model also enables parameter sensitivity studies, which confirmed that uniaxial contraction tests are not as efficient as biaxial tests for identifying changes in vascular smooth muscle function.

摘要

数学模型有助于综合理解生物结构和功能背后的复杂性,但必须通过实验数据来提供信息并进行验证。动脉环的单轴收缩是一种常用的体外研究平滑肌收缩特性的方法,尽管这种实验设置并不能模拟体内血管的几何形状或负荷。相比之下,对充气并轴向伸展的离体血管进行双轴收缩能在更现实的条件下提供更广泛的被动和主动信息。很少有研究直接比较这两种体外方法,即它们的结果如何重叠、如何不同,或者每种方法是否提供独特的互补信息。为此,据我们所知,我们提出了一种新的动脉收缩性多尺度数学模型,该模型考虑了分子、细胞和组织水平的结构和功能成分。动脉被假定为一个厚壁不可压缩圆柱体,由细胞外基质的各向异性模型描述,并且据我们所知,还有平滑肌收缩性的新模型。后者包括对变形的三维结构敏感性,包括微观尺度的肌丝重叠和肌丝晶格间距。整体模型捕捉了单轴和双轴实验收缩数据,仅考虑肌丝重叠时这是不可能做到的。该模型还能进行参数敏感性研究,证实了在识别血管平滑肌功能变化方面,单轴收缩试验不如双轴试验有效。

相似文献

1
Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle.
Biophys J. 2017 Aug 8;113(3):714-727. doi: 10.1016/j.bpj.2017.06.017.
2
Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility.
J Biomech Eng. 2019 Mar 1;141(3):0310081-03100810. doi: 10.1115/1.4042171.
3
Modeling the effects of muscle contraction on the mechanical response and circumferential stability of coronary arteries.
Math Biosci. 2019 Sep;315:108223. doi: 10.1016/j.mbs.2019.108223. Epub 2019 Jul 2.
4
The Role of Biaxial Loading on Smooth Muscle Contractility in the Nulliparous Murine Cervix.
Ann Biomed Eng. 2021 Aug;49(8):1874-1887. doi: 10.1007/s10439-021-02778-z. Epub 2021 Apr 20.
5
Cortical actin regulation modulates vascular contractility and compliance in veins.
J Physiol. 2015 Sep 1;593(17):3929-41. doi: 10.1113/JP270845. Epub 2015 Jul 26.
7
A dynamic model of smooth muscle contraction.
Biophys J. 1986 Jul;50(1):157-69. doi: 10.1016/S0006-3495(86)83448-8.
9
The contractile strength of vascular smooth muscle myocytes is shape dependent.
Integr Biol (Camb). 2014 Feb;6(2):152-63. doi: 10.1039/c3ib40230d.

引用本文的文献

2
Chemo-mechanical modeling of smooth muscle cell activation for the simulation of arterial walls under changing blood pressure.
Biomech Model Mechanobiol. 2023 Jun;22(3):1049-1065. doi: 10.1007/s10237-023-01700-x. Epub 2023 Mar 9.
3
Characterization of the active response of a guinea pig carotid artery.
Front Bioeng Biotechnol. 2022 Aug 26;10:924019. doi: 10.3389/fbioe.2022.924019. eCollection 2022.
4
A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury.
Front Bioeng Biotechnol. 2021 Jan 26;8:589889. doi: 10.3389/fbioe.2020.589889. eCollection 2020.
5
[Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Dec 25;37(6):939-947. doi: 10.7507/1001-5515.202008030.
6
Mechanobiological Stability of Biological Soft Tissues.
J Mech Phys Solids. 2019 Apr;125:298-325. doi: 10.1016/j.jmps.2018.12.013. Epub 2018 Dec 21.
7
Biomechanical characterization of murine pulmonary arteries.
J Biomech. 2019 Feb 14;84:18-26. doi: 10.1016/j.jbiomech.2018.12.012. Epub 2018 Dec 12.
8
Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility.
J Biomech Eng. 2019 Mar 1;141(3):0310081-03100810. doi: 10.1115/1.4042171.

本文引用的文献

1
Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections.
Arterioscler Thromb Vasc Biol. 2017 Jan;37(1):26-34. doi: 10.1161/ATVBAHA.116.303229. Epub 2016 Nov 22.
3
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice.
J Biomech Eng. 2016 May;138(5):051008. doi: 10.1115/1.4032938.
5
Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading.
Biomech Model Mechanobiol. 2016 Jun;15(3):579-92. doi: 10.1007/s10237-015-0711-z. Epub 2015 Jul 29.
6
The biaxial active mechanical properties of the porcine primary renal artery.
J Mech Behav Biomed Mater. 2015 Aug;48:28-37. doi: 10.1016/j.jmbbm.2015.04.004. Epub 2015 Apr 11.
8
Myosin filaments in smooth muscle cells do not have a constant length.
J Physiol. 2013 Dec 1;591(23):5867-78. doi: 10.1113/jphysiol.2013.264168. Epub 2013 Sep 30.
9
The length-tension curve in muscle depends on lattice spacing.
Proc Biol Sci. 2013 Sep 7;280(1766):20130697. doi: 10.1098/rspb.2013.0697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验