Suppr超能文献

豚鼠颈动脉主动反应的特征描述

Characterization of the active response of a guinea pig carotid artery.

作者信息

Navarrete Álvaro, Varela Pablo, López Miguel, García-Herrera Claudio M, Celentano Diego J, Krause Bernardo

机构信息

Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.

Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile.

出版信息

Front Bioeng Biotechnol. 2022 Aug 26;10:924019. doi: 10.3389/fbioe.2022.924019. eCollection 2022.

Abstract

This work presents a characterization of the active response of the carotid artery of guinea pig fetuses through a methodology that encompasses experiments, modeling and numerical simulation. To this end, the isometric contraction test is carried out in ring samples subjected to different levels of KCl concentrations and pre-stretching. Then, a coupled mechanochemical model, aimed at describing the smooth cell behavior and its influence on the passive and active mechanical response of the vascular tissue, is calibrated from the experimental measurements. Due to the complex stress and strain fields developed in the artery, a finite element numerical simulation of the test is performed to fit the model parameters, where those related to the phosphorylation and dephosphorylation activity along with the load-bearing capacity of the myosin cross-bridges are found to be the most predominant when sensitizing the active response. The main strengths of the model are associated with the prediction of the stationary state of the active mechanical response of the tissue through a realistic description of the mechanochemical process carried out at its cellular level.

摘要

这项工作通过一种涵盖实验、建模和数值模拟的方法,对豚鼠胎儿颈动脉的主动反应进行了表征。为此,在经受不同水平氯化钾浓度和预拉伸的环形样本中进行等长收缩试验。然后,根据实验测量结果校准一个旨在描述平滑肌细胞行为及其对血管组织被动和主动力学反应影响的耦合机械化学模型。由于动脉中产生的复杂应力和应变场,对试验进行了有限元数值模拟以拟合模型参数,其中发现与磷酸化和去磷酸化活性以及肌球蛋白横桥的承载能力相关的参数在激活主动反应时最为主要。该模型的主要优势在于通过在细胞水平对机械化学过程进行逼真描述,来预测组织主动力学反应的稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1652/9458959/f7ffbe3eeb0c/fbioe-10-924019-g001.jpg

相似文献

1
Characterization of the active response of a guinea pig carotid artery.
Front Bioeng Biotechnol. 2022 Aug 26;10:924019. doi: 10.3389/fbioe.2022.924019. eCollection 2022.
2
Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap.
J Theor Biol. 2012 Mar 21;297:176-86. doi: 10.1016/j.jtbi.2011.11.012. Epub 2011 Nov 18.
3
A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour.
Math Med Biol. 2010 Jun;27(2):129-55. doi: 10.1093/imammb/dqp017. Epub 2009 Jul 10.
4
Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):465-81. doi: 10.1016/j.pbiomolbio.2007.07.025. Epub 2007 Aug 11.
5
Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.
J Theor Biol. 2014 Oct 7;358:1-10. doi: 10.1016/j.jtbi.2014.04.028. Epub 2014 May 8.
6
A calcium-driven mechanochemical model for prediction of force generation in smooth muscle.
Biomech Model Mechanobiol. 2010 Dec;9(6):749-62. doi: 10.1007/s10237-010-0211-0. Epub 2010 Mar 31.
7
Role of myosin light-chain phosphorylation in guinea pig gallbladder smooth muscle contraction.
Am J Physiol. 1994 Mar;266(3 Pt 1):G469-74. doi: 10.1152/ajpgi.1994.266.3.G469.
8
Effect of muscle length on isometric stress and myosin light chain phosphorylation in gallbladder smooth muscle.
Am J Physiol. 1991 Jun;260(6 Pt 1):G920-4. doi: 10.1152/ajpgi.1991.260.6.G920.
9
Myosin light chain phosphorylation and contraction of guinea pig gallbladder smooth muscle.
Am J Physiol. 1991 Dec;261(6 Pt 1):G952-7. doi: 10.1152/ajpgi.1991.261.6.G952.
10
Inhibition of contraction and myosin light chain phosphorylation in guinea-pig smooth muscle by p21-activated kinase 1.
J Physiol. 2003 Jun 1;549(Pt 2):489-500. doi: 10.1113/jphysiol.2002.033167. Epub 2003 Apr 11.

引用本文的文献

本文引用的文献

1
Influence of multi-axial dynamic constraint on cell alignment and contractility in engineered tissues.
J Mech Behav Biomed Mater. 2020 Dec;112:104024. doi: 10.1016/j.jmbbm.2020.104024. Epub 2020 Aug 14.
2
MicroRNAs in Uteroplacental Vascular Dysfunction.
Cells. 2019 Oct 29;8(11):1344. doi: 10.3390/cells8111344.
3
Premature Vascular Aging in Guinea Pigs Affected by Fetal Growth Restriction.
Int J Mol Sci. 2019 Jul 15;20(14):3474. doi: 10.3390/ijms20143474.
4
Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13200-13209. doi: 10.1073/pnas.1902035116. Epub 2019 Jun 17.
6
Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility.
J Biomech Eng. 2019 Mar 1;141(3):0310081-03100810. doi: 10.1115/1.4042171.
7
Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity.
Cell Signal. 2018 Dec;52:48-64. doi: 10.1016/j.cellsig.2018.08.019. Epub 2018 Aug 30.
8
Mechanical characterization of arteries affected by fetal growth restriction in guinea pigs (Cavia porcellus).
J Mech Behav Biomed Mater. 2018 Dec;88:92-101. doi: 10.1016/j.jmbbm.2018.08.010. Epub 2018 Aug 14.
9
Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic.
J Physiol. 2018 Dec;596(23):5535-5569. doi: 10.1113/JP274948. Epub 2018 May 30.
10
Vascular smooth muscle contraction in hypertension.
Cardiovasc Res. 2018 Mar 15;114(4):529-539. doi: 10.1093/cvr/cvy023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验