Chumbley Justin R, Friston Karl J, Fearn Tom, Kiebel Stefan J
Wellcome Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3BG, UK.
Neuroimage. 2007 Nov 15;38(3):478-87. doi: 10.1016/j.neuroimage.2007.07.028. Epub 2007 Aug 7.
Dynamic causal modelling (DCM) is a modelling framework used to describe causal interactions in dynamical systems. It was developed to infer the causal architecture of networks of neuronal populations in the brain [Friston, K.J., Harrison, L, Penny, W., 2003. Dynamic causal modelling. NeuroImage. Aug; 19 (4): 1273-302]. In current formulations of DCM, the mean structure of the likelihood is a nonlinear and numerical function of the parameters, which precludes exact or analytic Bayesian inversion. To date, approximations to the posterior depend on the assumption of normality (i.e., the Laplace assumption). In particular, two arguments have been used to motivate normality of the prior and posterior distributions. First, Gaussian priors on the parameters are specified carefully to ensure that activity in the dynamic system of neuronal populations converges to a steady state (i.e., the dynamic system is dissipative). Secondly, normality of the posterior is an approximation based on general asymptotic results, regarding the form of the posterior under infinite data [Friston, K.J., Harrison, L, Penny, W., 2003. Dynamic causal modelling. NeuroImage. Aug; 19 (4): 1273-302]. Here, we provide a critique of these assumptions and evaluate them numerically. We use a Bayesian inversion scheme (the Metropolis-Hastings algorithm) that eschews both assumptions. This affords an independent route to the posterior and an external means to assess the performance of conventional schemes for DCM. It also allows us to assess the sensitivity of the posterior to different priors. First, we retain the conventional priors and compare the ensuing approximate posterior (Laplace) to the exact posterior (MCMC). Our analyses show that the Laplace approximation is appropriate for practical purposes. In a second, independent set of analyses, we compare the exact posterior under conventional priors with an exact posterior under newly defined uninformative priors. Reassuringly, we observe that the posterior is, for all practical purposes, insensitive of the choice of prior.
动态因果模型(DCM)是一种用于描述动态系统中因果相互作用的建模框架。它是为推断大脑中神经元群体网络的因果结构而开发的[弗里森,K.J.,哈里森,L,彭尼,W.,2003年。动态因果模型。《神经图像》。8月;19(4):1273 - 302]。在当前的DCM公式中,似然的均值结构是参数的非线性数值函数,这排除了精确或解析的贝叶斯反演。迄今为止,后验的近似依赖于正态性假设(即拉普拉斯假设)。特别地,有两个论据被用于支持先验和后验分布的正态性。首先,仔细指定参数上的高斯先验以确保神经元群体动态系统中的活动收敛到稳态(即动态系统是耗散的)。其次,后验的正态性是基于关于无限数据下后验形式的一般渐近结果的近似[弗里森,K.J.,哈里森,L,彭尼,W.,2003年。动态因果模型。《神经图像》。8月;19(4):1273 - 302]。在这里,我们对这些假设进行批判并进行数值评估。我们使用一种回避这两个假设的贝叶斯反演方案(梅特罗波利斯 - 黑斯廷斯算法)。这提供了一条通向“后验”的独立途径以及一种评估传统DCM方案性能的外部方法。它还使我们能够评估后验对不同先验的敏感性。首先,我们保留传统先验并将由此产生的近似后验(拉普拉斯)与精确后验(MCMC)进行比较。我们的分析表明,拉普拉斯近似在实际应用中是合适的。在第二组独立分析中,我们将传统先验下的精确后验与新定义的无信息先验下的精确后验进行比较。令人放心的是,我们观察到,在所有实际应用中,后验对先验的选择不敏感。