Suppr超能文献

贝叶斯群体感受野建模。

Bayesian population receptive field modelling.

机构信息

The Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.

Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, 20892-1366, USA.

出版信息

Neuroimage. 2018 Oct 15;180(Pt A):173-187. doi: 10.1016/j.neuroimage.2017.09.008. Epub 2017 Sep 8.

Abstract

We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain.

摘要

我们介绍了一种基于 fMRI 数据的概率(贝叶斯)映射群体感受野(pRF)的框架和相关软件工具箱。这种通用方法旨在处理任何维度的刺激,并在 2D 视网膜映射的背景下进行了演示和验证。该框架使实验者能够指定 fMRI 时间序列的生成(编码)模型,其中实验刺激进入神经活动的 pRF 模型,进而驱动神经血管耦合和血氧水平依赖(BOLD)反应的非线性模型。在体素或感兴趣区域的基础上,使用贝叶斯估计算法(变分拉普拉斯)共同估计神经元和血液动力学参数。这为感受野建模提供了几个新颖的贡献。参数的方差/协方差被估计,从而可以绘制感受野,同时正确表示 pRF 大小和位置的不确定性。考虑到大脑中血液动力学反应的可变性。此外,该框架为 pRF 分析引入了正式的假设检验,使能够根据其对数模型证据(通过变分自由能近似)来评估竞争模型,该证据代表准确性和复杂性之间的最佳权衡。使用模拟和经验数据,我们发现通常用于表示 pRF 大小和神经元缩放的参数具有很强的相关性,这是我们在进行推断时所描述的贝叶斯方法考虑到的。我们使用该框架使用 7T 功能磁共振成像数据比较了六种 pRF 模型变体的证据,发现圆形高斯差(DoG)模型总体上是我们数据的最佳解释。我们希望这个框架将有助于将任何数量维度的刺激空间映射到大脑的解剖结构上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f56/7417811/f7868c744078/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验