概率编程语言中的动态因果建模。
Dynamic causal modelling in probabilistic programming languages.
作者信息
Baldy Nina, Woodman Marmaduke, Jirsa Viktor K, Hashemi Meysam
机构信息
Aix-Marseille Universite, UMR INSERM 1106 Institut des Neurosciences des Systèmes, Marseille, France.
出版信息
J R Soc Interface. 2025 Jun;22(227):20240880. doi: 10.1098/rsif.2024.0880. Epub 2025 Jun 4.
Understanding the intricate dynamics of brain activities necessitates models that incorporate causality and nonlinearity. Dynamic causal modelling (DCM) presents a statistical framework that embraces causal relationships among brain regions and their responses to experimental manipulations, such as stimulation. In this study, we perform Bayesian inference on a neurobiologically plausible generative model that simulates event-related potentials observed in magneto/encephalography data. This translates into probabilistic inference of latent and observed states of a system driven by input stimuli, described by a set of nonlinear ordinary differential equations (ODEs) and potentially correlated parameters. We provide a guideline for reliable inference in the presence of multimodality, which arises from parameter degeneracy, ultimately enhancing the predictive accuracy of neural dynamics. Solutions include optimizing the hyperparameters, leveraging initialization with prior information and employing weighted stacking based on predictive accuracy. Moreover, we implement the inference and conduct comprehensive model comparison in several probabilistic programming languages to streamline the process and benchmark their efficiency. Our investigation shows that model inversion in DCM extends beyond variational approximation frameworks, demonstrating the effectiveness of gradient-based Markov chain Monte Carlo methods. We illustrate the accuracy and efficiency of posterior estimation using a self-tuning variant of Hamiltonian Monte Carlo and the automatic Laplace approximation, effectively addressing parameter degeneracy challenges. This technical endeavour holds the potential to advance the inversion of state-space ODE models, and contribute to neuroscience research and applications in neuroimaging through automatic DCM.
理解大脑活动的复杂动态需要纳入因果关系和非线性的模型。动态因果模型(DCM)提供了一个统计框架,该框架包含大脑区域之间的因果关系及其对实验操作(如刺激)的反应。在本研究中,我们对一个神经生物学上合理的生成模型进行贝叶斯推理,该模型模拟在磁/脑电图数据中观察到的事件相关电位。这转化为由输入刺激驱动的系统的潜在状态和观察状态的概率推理,该系统由一组非线性常微分方程(ODEs)和潜在相关参数描述。我们提供了在存在多模态情况下进行可靠推理的指导方针,多模态是由参数退化引起的,最终提高了神经动力学的预测准确性。解决方案包括优化超参数、利用先验信息进行初始化以及基于预测准确性采用加权堆叠。此外,我们在几种概率编程语言中实现推理并进行全面的模型比较,以简化过程并评估它们的效率。我们的研究表明,DCM中的模型反演超出了变分近似框架,证明了基于梯度的马尔可夫链蒙特卡罗方法的有效性。我们使用哈密顿蒙特卡罗的自调整变体和自动拉普拉斯近似说明了后验估计的准确性和效率,有效地解决了参数退化挑战。这项技术努力有可能推动状态空间ODE模型的反演,并通过自动DCM为神经科学研究和神经成像应用做出贡献。