Suppr超能文献

基于扩散的功能磁共振图像空间先验

Diffusion-based spatial priors for functional magnetic resonance images.

作者信息

Harrison L M, Penny W, Daunizeau J, Friston K J

机构信息

Wellcome Trust Centre for Neuroimaging, UCL, London, UK.

出版信息

Neuroimage. 2008 Jun;41(2):408-23. doi: 10.1016/j.neuroimage.2008.02.005. Epub 2008 Feb 20.

Abstract

We recently outlined a Bayesian scheme for analyzing fMRI data using diffusion-based spatial priors [Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J., 2007. Diffusion-based spatial priors for imaging. NeuroImage 38, 677-695]. The current paper continues this theme, applying it to a single-subject functional magnetic resonance imaging (fMRI) study of the auditory system. We show that spatial priors on functional activations, based on diffusion, can be formulated in terms of the eigenmodes of a graph Laplacian. This allows one to discard eigenmodes with small eigenvalues, to provide a computationally efficient scheme. Furthermore, this formulation shows that diffusion-based priors are a generalization of conventional Laplacian priors [Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. NeuroImage 24, 350-362]. Finally, we show how diffusion-based priors are a special case of Gaussian process models that can be inverted using classical covariance component estimation techniques like restricted maximum likelihood [Patterson, H.D., Thompson, R., 1974. Maximum likelihood estimation of components of variance. Paper presented at: 8th International Biometrics Conference (Constanta, Romania)]. The convention in SPM is to smooth data with a fixed isotropic Gaussian kernel before inverting a mass-univariate statistical model. This entails the strong assumption that data are generated smoothly throughout the brain. However, there is no way to determine if this assumption is supported by the data, because data are smoothed before statistical modeling. In contrast, if a spatial prior is used, smoothness is estimated given non-smoothed data. Explicit spatial priors enable formal model comparison of different prior assumptions, e.g., that data are generated from a stationary (i.e., fixed throughout the brain) or non-stationary spatial process. Indeed, for the auditory data we provide strong evidence for a non-stationary process, which concurs with a qualitative comparison of predicted activations at the boundary of functionally selective regions.

摘要

我们最近概述了一种用于分析功能磁共振成像(fMRI)数据的贝叶斯方案,该方案使用基于扩散的空间先验信息[哈里森,L.M.,彭尼,W.,阿什伯纳,J.,特鲁希略 - 巴雷托,N.,弗里斯顿,K.J.,2007年。基于扩散的成像空间先验信息。《神经影像学》38卷,677 - 695页]。当前论文延续了这一主题,将其应用于一项关于听觉系统的单受试者功能磁共振成像(fMRI)研究。我们表明,基于扩散的功能激活空间先验信息可以根据图拉普拉斯算子的本征模式来制定。这使得人们可以舍弃具有小特征值的本征模式,从而提供一种计算效率高的方案。此外,这种表述表明基于扩散的先验信息是传统拉普拉斯先验信息的推广[彭尼,W.D.,特鲁希略 - 巴雷托,N.J.,弗里斯顿,K.J.,2005年。具有空间先验信息的贝叶斯fMRI时间序列分析。《神经影像学》24卷,350 - 362页]。最后,我们展示了基于扩散的先验信息是高斯过程模型的一种特殊情况,它可以使用诸如限制最大似然法之类的经典协方差分量估计技术进行求逆[帕特森,H.D.,汤普森,R.,1974年。方差分量的最大似然估计。在第8届国际生物统计学会议(罗马尼亚康斯坦察)上发表的论文]。统计参数映射(SPM)中的惯例是在对单变量统计模型求逆之前,用固定的各向同性高斯核平滑数据。这需要一个很强的假设,即数据在整个大脑中是平滑生成的。然而,没有办法确定这个假设是否得到数据的支持,因为数据在统计建模之前就已经被平滑了。相比之下,如果使用空间先验信息,则是根据未平滑的数据来估计平滑度。明确的空间先验信息能够对不同的先验假设进行形式化的模型比较,例如,数据是由平稳(即整个大脑中固定)还是非平稳空间过程生成的。实际上,对于听觉数据,我们提供了强有力的证据支持非平稳过程,这与功能选择性区域边界处预测激活的定性比较结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验