Gujic Marko, Laude Dominique, Houssière Anne, Beloka Sofia, Argacha Jean-François, Adamopoulos Dionysios, Xhaët Olivier, Elghozi Jean-Luc, van de Borne Philippe
Department of Cardiology, Erasme Hospital, Brussels, Belgium.
J Physiol. 2007 Nov 15;585(Pt 1):165-74. doi: 10.1113/jphysiol.2007.141002. Epub 2007 Sep 20.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O2 in N2, chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (-42 +/- 7% muscle sympathetic nerve activity (MSNA) mmHg(-1)), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; -53 +/- 9% MSNA mmHg(-1), P = 0.5) and increased during resting hypoxia (-68 +/- 5% MSNA mmHg(-1), P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (-35 +/- 6% MSNA mmHg(-1), P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 +/- 1.7 ms mmHg(-1)), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 +/- 1.3 ms mmHg(-1), P = 0.09), but decreased during resting hypoxia (7.3 +/- 0.8 ms mmHg(-1), P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 +/- 1 ms mmHg(-1), P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
肌肉代谢感受器和外周化学感受器对低氧运动后的心肺及自主神经反应产生不同影响。目前尚不清楚这些影响是否伴随着交感神经和心脏压力反射控制的特定变化。通过对15名年轻男性受试者静脉注射硝普钠和去氧肾上腺素推注来评估交感神经和心脏压力反射功能。在局部循环停滞的条件下,按照随机顺序进行记录,记录时段包括:(1)静息和常氧状态(无代谢反射和化学反射激活);(2)最大自主收缩力30%的常氧握力运动后(代谢反射激活但无化学反射激活);(3)无握力的低氧状态(氮气中含10%氧气,化学反射激活但无代谢反射激活);以及(4)低氧状态下的握力运动后(化学反射和代谢反射激活)。与常氧静息状态(肌肉交感神经活动(MSNA)为-42±7% mmHg⁻¹)相比,常氧运动后缺血(PEI)期间交感神经压力反射敏感性未改变(-53±9% MSNA mmHg⁻¹,P = 0.5),而在静息低氧状态下增加(-68±5% MSNA mmHg⁻¹,P < 0.01)。低氧状态下PEI期间交感神经压力反射敏感性降低(-35±6% MSNA mmHg⁻¹,与无运动的低氧状态相比,P < 0.001;与常氧PEI相比,P = 0.16)。相反,与常氧静息状态(11.1±1.7 ms mmHg⁻¹)相比,常氧PEI期间心脏压力反射敏感性未改变(8.3±1.3 ms mmHg⁻¹,P = 0.09),但在静息低氧状态下降低(7.3±0.8 ms mmHg⁻¹,P < 0.05)。低氧状态下PEI期间心脏压力反射敏感性最低(4.3±1 ms mmHg⁻¹,与无运动的低氧状态相比,P < 0.01;与常氧运动相比,P < 0.001)。代谢感受器和化学感受器对交感神经和心脏压力反射功能产生不同影响。当在低氧状态下刺激这些感受器时,代谢感受器激活是交感神经压力反射敏感性的主要决定因素。