Suppr超能文献

使用中空纤维导管改善小分子和病毒载体在小鼠脑内的分布。

Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter.

作者信息

Oh Seunguk, Odland Rick, Wilson Scott R, Kroeger Kurt M, Liu Chunyan, Lowenstein Pedro R, Castro Maria G, Hall Walter A, Ohlfest John R

机构信息

Department of Neurosurgery, University of Minnesota Medical School, Minneapolis 55455, USA.

出版信息

J Neurosurg. 2007 Sep;107(3):568-77. doi: 10.3171/JNS-07/09/0568.

Abstract

OBJECT

A hollow fiber catheter was developed to improve the distribution of drugs administered via direct infusion into the central nervous system (CNS). It is a porous catheter that significantly increases the surface area of brain tissue into which a drug is infused.

METHODS

Dye was infused into the mouse brain through convection-enhanced delivery (CED) using a 28-gauge needle compared with a 3-mm-long hollow fiber catheter. To determine whether a hollow fiber catheter could increase the distribution of gene therapy vectors, a recombinant adenovirus expressing the firefly luciferase reporter was injected into the mouse striatum. Gene expression was monitored using in vivo bioluminescent imaging. To assess the distribution of gene transfer, an adenovirus expressing green fluorescent protein was injected into the striatum using a hollow fiber catheter or a needle.

RESULTS

Hollow fiber catheter-mediated infusion increased the volume of brain tissue labeled with dye by 2.7 times relative to needle-mediated infusion. In vivo imaging revealed that catheter-mediated infusion of adenovirus resulted in gene expression that was 10-times greater than that mediated by a needle. The catheter appreciably increased the area of brain transduced with adenovirus relative to a needle, affecting a significant portion of the injected hemisphere.

CONCLUSIONS

The miniature hollow fiber catheter used in this study significantly increased the distribution of dye and adenoviral-mediated gene transfer in the mouse brain compared with the levels reached using a 28-gauge needle. Compared with standard single-port clinical catheters, the hollow fiber catheter has the advantage of millions of nanoscale pores to increase surface area and bulk flow in the CNS. Extending the scale of the hollow fiber catheter for the large mammalian brain shows promise in increasing the distribution and efficacy of gene therapy and drug therapy using CED.

摘要

目的

研发一种中空纤维导管,以改善通过直接输注进入中枢神经系统(CNS)的药物分布。它是一种多孔导管,可显著增加药物输注所进入的脑组织表面积。

方法

与使用3毫米长的中空纤维导管相比,通过对流增强递送(CED)使用28号针头将染料注入小鼠脑内。为确定中空纤维导管是否能增加基因治疗载体的分布,将表达萤火虫荧光素酶报告基因的重组腺病毒注入小鼠纹状体。使用体内生物发光成像监测基因表达。为评估基因转移的分布,使用中空纤维导管或针头将表达绿色荧光蛋白的腺病毒注入纹状体。

结果

相对于针头介导的输注,中空纤维导管介导的输注使染料标记的脑组织体积增加了2.7倍。体内成像显示,导管介导的腺病毒输注导致的基因表达比针头介导的高10倍。相对于针头,该导管显著增加了腺病毒转导的脑区面积,影响了注射半球的很大一部分。

结论

与使用28号针头所达到的水平相比,本研究中使用的微型中空纤维导管显著增加了小鼠脑中染料和腺病毒介导的基因转移的分布。与标准的单端口临床导管相比,中空纤维导管具有数百万个纳米级孔隙的优势,可增加中枢神经系统中的表面积和总体流量。将中空纤维导管的规模扩大用于大型哺乳动物脑,有望提高使用CED进行基因治疗和药物治疗的分布和疗效。

相似文献

5
Anatomical differences determine distribution of adenovirus after convection-enhanced delivery to the rat brain.
PLoS One. 2011;6(10):e24396. doi: 10.1371/journal.pone.0024396. Epub 2011 Oct 13.
6
7
Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors.
Clin Cardiol. 1999 Jan;22(1 Suppl 1):I23-9. doi: 10.1002/clc.4960221308.
8
In vivo performance of a microfabricated catheter for intraparenchymal delivery.
J Neurosci Methods. 2014 May 30;229:76-83. doi: 10.1016/j.jneumeth.2014.03.016. Epub 2014 Apr 18.
9
Efficacy of nonviral gene transfer in the canine brain.
J Neurosurg. 2007 Jul;107(1):136-44. doi: 10.3171/JNS-07/07/0136.
10
Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles.
J Neurosurg. 2007 Sep;107(3):560-7. doi: 10.3171/JNS-07/09/0560.

引用本文的文献

1
Improving the Efficacy and Accessibility of Intracranial Viral Vector Delivery in Non-Human Primates.
Pharmaceutics. 2022 Jul 8;14(7):1435. doi: 10.3390/pharmaceutics14071435.
2
Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis.
Int J Numer Method Biomed Eng. 2022 Sep;38(9):e3635. doi: 10.1002/cnm.3635. Epub 2022 Jul 15.
3
Convection-enhanced delivery for high-grade glioma.
Neurooncol Pract. 2021 Nov 20;9(1):24-34. doi: 10.1093/nop/npab065. eCollection 2022 Feb.
4
Design and Validation of a Multi-Point Injection Technology for MR-Guided Convection Enhanced Delivery in the Brain.
Front Med Technol. 2021 Oct 14;3:725844. doi: 10.3389/fmedt.2021.725844. eCollection 2021.
5
Convection Enhanced Delivery in the Setting of High-Grade Gliomas.
Pharmaceutics. 2021 Apr 15;13(4):561. doi: 10.3390/pharmaceutics13040561.
7
Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy.
J Oncol. 2019 Jul 22;2019:9342796. doi: 10.1155/2019/9342796. eCollection 2019.
8
Theory of porous catheters and their applications in intraparenchymal infusions.
Biomed Phys Eng Express. 2017;3(2). doi: 10.1088/2057-1976/aa5a77. Epub 2017 Feb 27.
9
Nanotherapeutic systems for local treatment of brain tumors.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1). doi: 10.1002/wnan.1479. Epub 2017 May 24.
10
Convection-Enhanced Delivery.
Neurotherapeutics. 2017 Apr;14(2):358-371. doi: 10.1007/s13311-017-0520-4.

本文引用的文献

1
Gene transfer into neural cells in vitro using adenoviral vectors.
Curr Protoc Neurosci. 2001 May;Chapter 4:Unit 4.23. doi: 10.1002/0471142301.ns0423s13.
2
Convection-enhanced delivery of therapeutics for brain disease, and its optimization.
Neurosurg Focus. 2006 Apr 15;20(4):E12. doi: 10.3171/foc.2006.20.4.7.
3
Convection-enhanced delivery of targeted toxins for malignant glioma.
Expert Opin Drug Deliv. 2006 May;3(3):371-7. doi: 10.1517/17425247.3.3.371.
4
Cell and gene-based therapies for the lysosomal storage diseases.
Curr Gene Ther. 2006 Apr;6(2):227-41. doi: 10.2174/156652306776359522.
6
Fabrication and characterization of microfluidic probes for convection enhanced drug delivery.
J Control Release. 2006 Apr 10;111(3):252-62. doi: 10.1016/j.jconrel.2005.11.018. Epub 2006 Feb 14.
9
Convection enhanced delivery for the treatment of malignant gliomas: symposium review.
J Neurooncol. 2005 May;73(1):57-69. doi: 10.1007/s11060-004-2243-8.
10
Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients.
Neurosurgery. 2005 Jun;56(6):1243-52; discussion 1252-3. doi: 10.1227/01.neu.0000159649.71890.30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验