Suppr超能文献

局灶性癫痫发作间期功能磁共振成像的独立成分分析:与基于一般线性模型的脑电图相关功能磁共振成像的比较。

Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI.

作者信息

Rodionov R, De Martino F, Laufs H, Carmichael D W, Formisano E, Walker M, Duncan John S, Lemieux L

机构信息

Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College of London Queen Square, London WC1N 3BG, UK.

出版信息

Neuroimage. 2007 Nov 15;38(3):488-500. doi: 10.1016/j.neuroimage.2007.08.003. Epub 2007 Aug 17.

Abstract

The general linear model (GLM) has been used to analyze simultaneous EEG-fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEG-fMRI data in which abnormalities are not apparent on scalp EEG.

摘要

一般线性模型(GLM)已被用于分析同步脑电图-功能磁共振成像(EEG-fMRI),以揭示与头皮脑电图上识别出的发作间期癫痫放电(IED)相关的脑血氧水平依赖(BOLD)变化。当脑电图中未明显出现IED时,这种方法无效。在这些情况下,不需要基于脑电图的模型的数据驱动功能磁共振成像分析技术可能提供一种解决方案。我们比较了8例局灶性癫痫患者功能磁共振成像数据的独立成分分析(ICA)和基于脑电图的GLM分析结果。空间ICA用于提取独立成分(IC),这些成分被自动分类为与BOLD相关、运动伪影、EPI敏感性伪影、大血管、高空间或时间频率噪声。分类器将候选IC的数量减少了78%,平均有16个与BOLD相关的IC。基于时空标准评估了ICA和GLM得出的结果之间的一致性。在每位患者中,其中一个IC符合与基于IED的GLM结果相对应的标准。其余的IC与自发脑活动的BOLD模式一致,可能包括头皮脑电图上不明显的癫痫活动。总之,功能磁共振成像的ICA能够揭示局灶性癫痫患者的癫痫活动区域,可能有助于分析头皮脑电图上无异常的脑电图-功能磁共振成像数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验