Suppr超能文献

从高通量数据推断转录调控网络。

Inferring transcriptional regulatory networks from high-throughput data.

作者信息

Wang Rui-Sheng, Wang Yong, Zhang Xiang-Sun, Chen Luonan

机构信息

School of Information, Renmin University of China, Beijing 100872, China.

出版信息

Bioinformatics. 2007 Nov 15;23(22):3056-64. doi: 10.1093/bioinformatics/btm465. Epub 2007 Sep 22.

Abstract

MOTIVATION

Inferring the relationships between transcription factors (TFs) and their targets has utmost importance for understanding the complex regulatory mechanisms in cellular systems. However, the transcription factor activities (TFAs) cannot be measured directly by standard microarray experiment owing to various post-translational modifications. In particular, cooperative mechanism and combinatorial control are common in gene regulation, e.g. TFs usually recruit other proteins cooperatively to facilitate transcriptional reaction processes.

RESULTS

In this article, we propose a novel method for inferring transcriptional regulatory networks (TRN) from gene expression data based on protein transcription complexes and mass action law. With gene expression data and TFAs estimated from transcription complex information, the inference of TRN is formulated as a linear programming (LP) problem which has a globally optimal solution in terms of L(1) norm error. The proposed method not only can easily incorporate ChIP-Chip data as prior knowledge, but also can integrate multiple gene expression datasets from different experiments simultaneously. A unique feature of our method is to take into account protein cooperation in transcription process. We tested our method by using both synthetic data and several experimental datasets in yeast. The extensive results illustrate the effectiveness of the proposed method for predicting transcription regulatory relationships between TFs with co-regulators and target genes.

摘要

动机

推断转录因子(TFs)与其靶标之间的关系对于理解细胞系统中的复杂调控机制至关重要。然而,由于各种翻译后修饰,转录因子活性(TFAs)无法通过标准微阵列实验直接测量。特别是,协同机制和组合控制在基因调控中很常见,例如转录因子通常协同招募其他蛋白质以促进转录反应过程。

结果

在本文中,我们提出了一种基于蛋白质转录复合物和质量作用定律从基因表达数据推断转录调控网络(TRN)的新方法。利用从转录复合物信息估计的基因表达数据和转录因子活性,将转录调控网络的推断表述为一个线性规划(LP)问题,该问题在L(1)范数误差方面具有全局最优解。所提出的方法不仅可以轻松地将ChIP-Chip数据作为先验知识纳入,还可以同时整合来自不同实验的多个基因表达数据集。我们方法的一个独特特点是考虑了转录过程中的蛋白质协同作用。我们通过使用合成数据和酵母中的几个实验数据集对我们的方法进行了测试。广泛的结果说明了所提出的方法在预测转录因子与共调节因子和靶基因之间的转录调控关系方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验