Zhang Xiuwei, Moret Bernard M E
Laboratory for Computational Biology and Bioinformatics, Ecole Polytechnique Fédérale de Lausanne, EPFL-IC-LCBB, INJ230, Station 14, CH-1015 Lausanne, Switzerland.
Algorithms Mol Biol. 2010 Jan 4;5:1. doi: 10.1186/1748-7188-5-1.
Computational inference of transcriptional regulatory networks remains a challenging problem, in part due to the lack of strong network models. In this paper we present evolutionary approaches to improve the inference of regulatory networks for a family of organisms by developing an evolutionary model for these networks and taking advantage of established phylogenetic relationships among these organisms. In previous work, we used a simple evolutionary model and provided extensive simulation results showing that phylogenetic information, combined with such a model, could be used to gain significant improvements on the performance of current inference algorithms.
In this paper, we extend the evolutionary model so as to take into account gene duplications and losses, which are viewed as major drivers in the evolution of regulatory networks. We show how to adapt our evolutionary approach to this new model and provide detailed simulation results, which show significant improvement on the reference network inference algorithms. Different evolutionary histories for gene duplications and losses are studied, showing that our adapted approach is feasible under a broad range of conditions. We also provide results on biological data (cis-regulatory modules for 12 species of Drosophila), confirming our simulation results.
转录调控网络的计算推断仍然是一个具有挑战性的问题,部分原因是缺乏强大的网络模型。在本文中,我们提出了进化方法,通过为一类生物体开发进化模型并利用这些生物体之间已建立的系统发育关系,来改进调控网络的推断。在之前的工作中,我们使用了一个简单的进化模型,并提供了大量模拟结果,表明系统发育信息与这样一个模型相结合,可以显著提高当前推断算法的性能。
在本文中,我们扩展了进化模型,以考虑基因复制和丢失,它们被视为调控网络进化的主要驱动力。我们展示了如何使我们的进化方法适应这个新模型,并提供了详细的模拟结果,这些结果表明在参考网络推断算法上有显著改进。研究了基因复制和丢失的不同进化历史,表明我们改进后的方法在广泛的条件下是可行的。我们还提供了关于生物数据(12种果蝇的顺式调控模块)的结果,证实了我们的模拟结果。