Suppr超能文献

癌症的计算机模型。

In silico models of cancer.

机构信息

Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61820, USA.

Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL, USA.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):438-459. doi: 10.1002/wsbm.75.

Abstract

Cancer is a complex disease that involves multiple types of biological interactions across diverse physical, temporal, and biological scales. This complexity presents substantial challenges for the characterization of cancer biology, and motivates the study of cancer in the context of molecular, cellular, and physiological systems. Computational models of cancer are being developed to aid both biological discovery and clinical medicine. The development of these in silico models is facilitated by rapidly advancing experimental and analytical tools that generate information-rich, high-throughput biological data. Statistical models of cancer at the genomic, transcriptomic, and pathway levels have proven effective in developing diagnostic and prognostic molecular signatures, as well as in identifying perturbed pathways. Statistically inferred network models can prove useful in settings where data overfitting can be avoided, and provide an important means for biological discovery. Mechanistically based signaling and metabolic models that apply a priori knowledge of biochemical processes derived from experiments can also be reconstructed where data are available, and can provide insight and predictive ability regarding the behavior of these systems. At longer length scales, continuum and agent-based models of the tumor microenvironment and other tissue-level interactions enable modeling of cancer cell populations and tumor progression. Even though cancer has been among the most-studied human diseases using systems approaches, significant challenges remain before the enormous potential of in silico cancer biology can be fully realized.

摘要

癌症是一种复杂的疾病,涉及多种类型的生物相互作用,跨越不同的物理、时间和生物学尺度。这种复杂性给癌症生物学的特征描述带来了巨大的挑战,也促使人们在分子、细胞和生理系统的背景下研究癌症。癌症的计算模型正在被开发出来,以帮助生物发现和临床医学。这些计算模型的发展得益于快速发展的实验和分析工具,这些工具生成了信息丰富、高通量的生物学数据。在基因组、转录组和途径水平上对癌症的统计模型已被证明在开发诊断和预后分子特征以及识别失调途径方面非常有效。在可以避免数据过拟合的情况下,统计推断的网络模型可以证明是有用的,并为生物发现提供了重要手段。在有数据可用的情况下,应用实验得出的先验生化过程知识的基于机制的信号和代谢模型也可以被重建,这些模型可以为这些系统的行为提供见解和预测能力。在更长的尺度上,肿瘤微环境和其他组织水平相互作用的连续体和基于代理的模型可以实现对癌细胞群体和肿瘤进展的建模。尽管癌症一直是使用系统方法研究最多的人类疾病之一,但在充分实现计算癌症生物学的巨大潜力之前,仍然存在重大挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验