Yun Jun-Soo, Rust Jennifer M, Ishimaru Tatsuto, Díaz Elva
Department of Pharmacology, UC Davis School of Medicine, Davis, CA 95616, USA.
Mol Cell Biol. 2007 Dec;27(23):8178-89. doi: 10.1128/MCB.00656-06. Epub 2007 Sep 24.
During development, Sonic hedgehog (Shh) regulates the proliferation of cerebellar granule neuron precursors (GNPs) in part via expression of Nmyc. We present evidence supporting a novel role for the Mad family member Mad3 in the Shh pathway to regulate Nmyc expression and GNP proliferation. Mad3 mRNA is transiently expressed in GNPs during proliferation. Cultured GNPs express Mad3 in response to Shh stimulation in a cyclopamine-dependent manner. Mad3 is necessary for Shh-dependent GNP proliferation as measured by bromodeoxyuridine incorporation and Nmyc expression. Furthermore, Mad3 overexpression, but not that of other Mad proteins, is sufficient to induce GNP proliferation in the absence of Shh. Structure-function analysis revealed that Max dimerization and recruitment of the mSin3 corepressor are required for Mad3-mediated GNP proliferation. Surprisingly, basic-domain-dependent DNA binding of Mad3 is not required, suggesting that Mad3 interacts with other DNA binding proteins to repress transcription. Interestingly, cerebellar tumors and pretumor cells derived from patched heterozygous mice express high levels of Mad3 compared with adjacent normal cerebellar tissue. Our studies support a novel role for Mad3 in cerebellar GNP proliferation and possibly tumorigenesis, and they challenge the current paradigm that Mad3 should antagonize Nmyc by competition for direct DNA binding via Max dimerization.
在发育过程中,音猬因子(Shh)部分通过Nmyc的表达来调节小脑颗粒神经元前体细胞(GNPs)的增殖。我们提供的证据支持了Mad家族成员Mad3在Shh信号通路中具有调节Nmyc表达和GNPs增殖的新作用。Mad3 mRNA在增殖期间的GNPs中短暂表达。培养的GNPs在环杷明依赖的方式下对Shh刺激产生反应时表达Mad3。通过溴脱氧尿苷掺入和Nmyc表达测量,Mad3对于Shh依赖的GNPs增殖是必需的。此外,Mad3的过表达而非其他Mad蛋白的过表达,足以在没有Shh的情况下诱导GNPs增殖。结构功能分析表明,Mad3介导的GNPs增殖需要Max二聚化和mSin3共抑制因子的募集。令人惊讶的是,Mad3的碱性结构域依赖的DNA结合不是必需的,这表明Mad3与其他DNA结合蛋白相互作用以抑制转录。有趣的是,与相邻正常小脑组织相比,来自patched杂合小鼠的小脑肿瘤和肿瘤前细胞表达高水平的Mad3。我们的研究支持Mad3在小脑GNPs增殖以及可能的肿瘤发生中具有新作用,并且它们挑战了当前认为Mad3应通过与Max二聚化竞争直接DNA结合来拮抗Nmyc的范式。