Young Robert, Babb James, Law Meng, Pollack Erica, Johnson Glyn
Department of Radiology, NYU Medical Center, New York, New York, USA.
J Magn Reson Imaging. 2007 Oct;26(4):1053-63. doi: 10.1002/jmri.21064.
To compare routine ROI analysis and three different histogram analyses in the grading of glial neoplasms. The hypothesis is that histogram methods can provide a robust and objective technique for quantifying perfusion data in brain gliomas. Current region-of-interest (ROI)-based methods for the analysis of dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC MRI) data are operator-dependent.
A total of 92 patients underwent conventional and DSC MRI. Multiple histogram metrics were obtained for cerebral blood flow (CBF), cerebral blood volume (CBV), and relative CBV (rCBV) maps using tumoral (T), peritumoral (P), and total tumoral (TT) analysis. Results were compared to histopathologic grades. Statistical analysis included Mann-Whitney (MW) tests, Spearman rank correlation coefficients, logistic regression, and McNemar tests.
The maximum value of rCBV (rCBV(max)) showed highly significant correlation with glioma grade (r = 0.734, P < 0.001). The strongest histogram correlations (P < 0.0001) occurred with rCBV(T) SD (r = 0.718), rCBV(P) SD(25) (r = 0.724) and rCBV(TT) SD(50) (r = 0.685). Multiple rCBV(T), rCBV(P), and rCBV(TT) histogram metrics showed significant correlations. CBF and CBV histogram metrics were less strongly correlated with glioma grade than rCBV histogram metrics.
Histogram analysis of perfusion MR provides prediction of glioma grade, with peritumoral metrics outperforming tumoral and total tumoral metrics. Further refinement may lead to automated methods for perfusion data analysis.
比较常规感兴趣区(ROI)分析和三种不同的直方图分析在神经胶质瘤分级中的应用。假设是直方图方法可为量化脑胶质瘤灌注数据提供一种可靠且客观的技术。当前基于感兴趣区(ROI)的动态磁敏感对比灌注磁共振成像(DSC MRI)数据分析方法依赖于操作者。
共有92例患者接受了常规MRI和DSC MRI检查。使用肿瘤(T)、瘤周(P)和肿瘤总体积(TT)分析,获取脑血流量(CBF)、脑血容量(CBV)和相对脑血容量(rCBV)图的多个直方图指标。将结果与组织病理学分级进行比较。统计分析包括曼-惠特尼(MW)检验、斯皮尔曼等级相关系数、逻辑回归和麦克尼马尔检验。
rCBV的最大值(rCBV(max))与胶质瘤分级显示出高度显著的相关性(r = 0.734,P < 0.001)。最强的直方图相关性(P < 0.0001)出现在rCBV(T)标准差(r = 0.718)、rCBV(P)标准差(25)(r = 0.724)和rCBV(TT)标准差(50)(r = 0.685)。多个rCBV(T)、rCBV(P)和rCBV(TT)直方图指标显示出显著相关性。与rCBV直方图指标相比,CBF和CBV直方图指标与胶质瘤分级的相关性较弱。
灌注磁共振成像的直方图分析可预测胶质瘤分级,瘤周指标优于肿瘤和肿瘤总体积指标。进一步完善可能会产生灌注数据分析的自动化方法。