Kang Sun-Woong, Yang Hee Seok, Seo Sang-Woo, Han Dong Keun, Kim Byung-Soo
Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea.
J Biomed Mater Res A. 2008 Jun 1;85(3):747-56. doi: 10.1002/jbm.a.31572.
Biodegradable polymer/ceramic composite scaffold could overcome limitations of biodegradable polymers or ceramics for bone regeneration. Injectable scaffold has raised great interest for bone regeneration in vivo, since it allows one for easy filling of irregularly shaped bone defects and implantation of osteogenic cells through minimally invasive surgical procedures The purpose of this study was to determine whether apatite-coated poly(lactic-co-glycolic acid) (PLGA) microspheres could be used as an injectable scaffold to regenerate bone in vivo. Apatite-coated PLGA microspheres were fabricated by incubating PLGA microspheres in simulated body fluid. The apatite that coated the PLGA microsphere surfaces was similar to apatite in natural bone, as demonstrated by scanning electron microscopy, X-ray diffraction spectra, energy-dispersive spectroscopy, and Fourier transformed-infrared spectroscopy analyses. Rat osteoblasts were mixed with apatite-coated PLGA microspheres and injected immediately into subcutaneous sites of athymic mice. Osteoblast transplantation with plain PLGA microspheres served as a control. Histological analysis of the implants at 6 weeks with hematoxylin and eosin staining, Masson's trichrome staining, and von Kossa staining revealed much better regeneration of bone in the apatite-coated PLGA microsphere group than the plain PLGA microsphere group. The new bone formation area and the calcium content of the implants were significantly higher in the apatite-coated PLGA microsphere group than in the plain PLGA microsphere group. This study demonstrates the feasibility of using apatite-coated PLGA microspheres as an injectable scaffold for in vivo bone tissue engineering. This scaffold may be useful for bone regeneration through minimally invasive surgical procedures in orthopedic applications.
可生物降解的聚合物/陶瓷复合支架能够克服可生物降解聚合物或陶瓷在骨再生方面的局限性。可注射支架已引起人们对体内骨再生的极大兴趣,因为它能够通过微创手术轻松填充不规则形状的骨缺损并植入成骨细胞。本研究的目的是确定磷灰石涂层聚(乳酸 - 乙醇酸)(PLGA)微球是否可用作可注射支架以在体内再生骨。通过将PLGA微球在模拟体液中孵育来制备磷灰石涂层PLGA微球。扫描电子显微镜、X射线衍射光谱、能量色散光谱和傅里叶变换红外光谱分析表明,涂覆在PLGA微球表面的磷灰石与天然骨中的磷灰石相似。将大鼠成骨细胞与磷灰石涂层PLGA微球混合,并立即注射到无胸腺小鼠的皮下部位。使用普通PLGA微球进行成骨细胞移植作为对照。用苏木精和伊红染色、马松三色染色和冯·科萨染色对6周时的植入物进行组织学分析,结果显示磷灰石涂层PLGA微球组的骨再生情况比普通PLGA微球组好得多。磷灰石涂层PLGA微球组植入物的新骨形成面积和钙含量明显高于普通PLGA微球组。本研究证明了使用磷灰石涂层PLGA微球作为体内骨组织工程可注射支架的可行性。这种支架可能有助于在骨科应用中通过微创手术进行骨再生。