Brozović Marina, Gail Alexander, Andersen Richard A
Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
J Neurosci. 2007 Sep 26;27(39):10588-96. doi: 10.1523/JNEUROSCI.2685-07.2007.
A prevailing question in sensorimotor research is the integration of sensory signals with abstract behavioral rules (contexts) and how this results in decisions about motor actions. We used neural network models to study how context-specific visuomotor remapping may depend on the functional connectivity among multiple layers. Networks were trained to perform different rotational visuomotor associations, depending on the stimulus color (a nonspatial context signal). In network I, the context signal was propagated forward through the network (bottom-up), whereas in network II, it was propagated backwards (top-down). During the presentation of the visual cue stimulus, both networks integrate the context with the sensory information via a mechanism similar to the classic gain field. The recurrence in the networks hidden layers allowed a simulation of the multimodal integration over time. Network I learned to perform the proper visuomotor transformations based on a context-modulated memory of the visual cue in its hidden layer activity. In network II, a brief visual response, which was driven by the sensory input, is quickly replaced by a context-modulated motor-goal representation in the hidden layer. This happens because of a dominant feedback signal from the output layer that first conveys context information, and then, after the disappearance of the visual cue, conveys motor goal information. We also show that the origin of the context information is not necessarily closely tied to the top-down feedback. However, we suggest that the predominance of motor-goal representations found in the parietal cortex during context-specific movement planning might be the consequence of strong top-down feedback originating from within the parietal lobe or from the frontal lobe.
感觉运动研究中一个普遍存在的问题是感觉信号与抽象行为规则(情境)的整合,以及这如何导致关于运动动作的决策。我们使用神经网络模型来研究特定情境下的视觉运动重新映射如何可能依赖于多层之间的功能连接。网络被训练来执行不同的旋转视觉运动关联,这取决于刺激颜色(一种非空间情境信号)。在网络I中,情境信号通过网络向前传播(自下而上),而在网络II中,它向后传播(自上而下)。在视觉提示刺激呈现期间,两个网络都通过一种类似于经典增益场的机制将情境与感觉信息整合起来。网络隐藏层中的循环允许对随时间的多模态整合进行模拟。网络I学会了基于其隐藏层活动中视觉提示的情境调制记忆来执行适当的视觉运动转换。在网络II中,由感觉输入驱动的短暂视觉反应很快被隐藏层中情境调制的运动目标表征所取代。这是因为来自输出层的主导反馈信号首先传达情境信息,然后在视觉提示消失后传达运动目标信息。我们还表明,情境信息的来源不一定与自上而下的反馈紧密相关。然而,我们认为,在特定情境的运动规划过程中,顶叶皮层中发现的运动目标表征占主导地位可能是源自顶叶叶内或额叶的强烈自上而下反馈的结果。