Suppr超能文献

用于预测性感觉运动控制的混合感觉运动选择性的神经几何学。

Neural geometry from mixed sensorimotor selectivity for predictive sensorimotor control.

作者信息

Zhang Yiheng, Chen Yun, Wang Tianwei, Cui He

机构信息

Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.

Chinese Institute for Brain Research, Beijing, China.

出版信息

Elife. 2025 May 1;13:RP100064. doi: 10.7554/eLife.100064.

Abstract

Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.

摘要

尽管最近的研究表明,运动皮层的活动除了产生运动输出外,还接收大量有关感觉输入的信息,但感觉环境如何调节运动指令仍不清楚。在这里,我们通过微电极阵列记录了猴子在灵活手动拦截移动目标时运动皮层中的群体神经活动。在这个需要预测性感觉运动控制的任务中,运动皮层中编码即将到来运动的大多数神经元的活动受到正在进行的目标运动的影响。运动开始时的单试次神经状态形成了交错的轨道几何形状,这表明目标运动以正交方式调节运动周围的活动。这种神经几何形状通过具有任务特定输入输出映射的表征模型和循环神经网络(RNN)进行了进一步评估。我们提出,感觉运动动力学可以从神经元的混合感觉运动选择性和调制之间的动态相互作用中推导出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b887/12045623/bf8509631763/elife-100064-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验