Götz Christine, Fekete Agnes, Gebefuegi Istvan, Forczek Sándor T, Fuksová Kvetoslava, Li Xiaojing, Englmann Matthias, Gryndler Milan, Hartmann Anton, Matucha Miroslav, Schmitt-Kopplin Philippe, Schröder Peter
Department Microbe-Plant Interactions, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
Anal Bioanal Chem. 2007 Nov;389(5):1447-57. doi: 10.1007/s00216-007-1579-2. Epub 2007 Sep 26.
Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.
根际中细菌的种内和种间通讯由可扩散信号分子介导。许多革兰氏阴性菌在群体感应反应中使用N-酰基高丝氨酸内酯(AHLs)作为自诱导剂。虽然细菌信号传导已得到充分描述,但AHLs与植物接触后的命运却鲜为人知。因此,使用超高效液相色谱(UPLC)、傅里叶变换离子回旋共振质谱(FTICR-MS)和氚标记的AHLs,以大麦(Hordeum vulgare L.)和豆科植物豆薯(Pachyrhizus erosus (L.) Urban)为模式植物,在无菌体系中研究了N-己酰基-(C6-HSL)、N-辛酰基-(C8-HSL)和N-癸酰基高丝氨酸内酯(C10-HSL)的吸附、吸收和转运。在实验条件下,由于非生物吸附或降解导致的AHL浓度降低是可以接受的。植物的存在会根据化合物的亲脂性增强培养基中AHL的下降,其中豆科植物导致的AHL下降比大麦更强。在两种植物的根提取物中都可追踪到所有测试的AHLs。除C10-HSL外,所有AHLs在大麦地上部分都可检测到,而在豆薯地上部分仅发现C6-HSL。此外,使用氚标记的AHLs来确定短期吸收动力学。通过气相色谱-质谱联用(GC-MS)进行的手性分离表明,两种植物对D-AHL立体异构体的区分程度不同。这些结果表明,在所测试的植物中,不同AHLs的吸收和降解存在显著差异。