Suppr超能文献

基于iTRAQ试剂的线性离子阱质谱定量蛋白质组学分析

iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer.

作者信息

Griffin Timothy J, Xie Hongwei, Bandhakavi Sricharan, Popko Jonathan, Mohan Archana, Carlis John V, Higgins LeeAnn

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics, Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Proteome Res. 2007 Nov;6(11):4200-9. doi: 10.1021/pr070291b. Epub 2007 Sep 29.

Abstract

For proteomic analysis using tandem mass spectrometry, linear ion trap instruments provide unsurpassed sensitivity but unreliably detect low mass peptide fragments, precluding their use with iTRAQ reagent-labeled samples. Although the popular LTQ linear ion trap supports analyzing iTRAQ reagent-labeled peptides via pulsed Q dissociation, PQD, its effectiveness remains questionable. Using a standard mixture, we found careful tuning of relative collision energy necessary for fragmenting iTRAQ reagent-labeled peptides, and increasing microscan acquisition and repeat count improves quantification but identifies somewhat fewer peptides. We developed software to calculate abundance ratios via summing reporter ion intensities across spectra matching to each protein, thereby providing maximized accuracy. Testing found that results closely corresponded between analysis using optimized LTQ-PQD settings plus our software and using a Qstar instrument. Thus, we demonstrate the effectiveness of LTQ-PQD analyzing iTRAQ reagent-labeled peptides, and provide guidelines for successful quantitative proteomic studies.

摘要

对于使用串联质谱的蛋白质组学分析,线性离子阱仪器具有无与伦比的灵敏度,但在检测低质量肽片段时不可靠,这使得它们无法用于iTRAQ试剂标记的样品。尽管流行的LTQ线性离子阱支持通过脉冲Q解离(PQD)分析iTRAQ试剂标记的肽,但其有效性仍值得怀疑。使用标准混合物,我们发现仔细调整iTRAQ试剂标记肽片段化所需的相对碰撞能量,增加微扫描采集和重复计数可提高定量,但鉴定出的肽略少。我们开发了软件,通过对与每种蛋白质匹配的光谱中的报告离子强度求和来计算丰度比,从而提供最大的准确性。测试发现,使用优化的LTQ-PQD设置加我们的软件进行分析与使用Qstar仪器进行分析的结果非常吻合。因此,我们证明了LTQ-PQD分析iTRAQ试剂标记肽的有效性,并为成功的定量蛋白质组学研究提供了指导。

相似文献

1
iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer.
J Proteome Res. 2007 Nov;6(11):4200-9. doi: 10.1021/pr070291b. Epub 2007 Sep 29.
3
Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer.
Mol Cell Proteomics. 2008 Sep;7(9):1702-13. doi: 10.1074/mcp.M800029-MCP200. Epub 2008 May 29.
7
Peptide and protein quantification using iTRAQ with electron transfer dissociation.
J Am Soc Mass Spectrom. 2008 Sep;19(9):1255-62. doi: 10.1016/j.jasms.2008.05.023. Epub 2008 Jun 17.
8
Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags.
J Proteomics. 2010 Feb 10;73(4):769-77. doi: 10.1016/j.jprot.2009.10.015. Epub 2009 Nov 10.
9
Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD).
J Am Soc Mass Spectrom. 2011 Oct;22(10):1753-62. doi: 10.1007/s13361-011-0197-6. Epub 2011 Jul 15.

引用本文的文献

2
Quantitative Proteomics Using Isobaric Labeling: A Practical Guide.
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):689-706. doi: 10.1016/j.gpb.2021.08.012. Epub 2022 Jan 8.
4
Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics.
Neuron. 2015 May 20;86(4):1000-1014. doi: 10.1016/j.neuron.2015.03.060. Epub 2015 Apr 30.
5
Isobaric labeling-based relative quantification in shotgun proteomics.
J Proteome Res. 2014 Dec 5;13(12):5293-309. doi: 10.1021/pr500880b. Epub 2014 Nov 4.
6
Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice.
Mol Cell Proteomics. 2013 Dec;12(12):3744-58. doi: 10.1074/mcp.M113.027441. Epub 2013 Sep 12.
7
iTRAQ analysis with Paul ion trap-obstacle solved.
J Proteome Res. 2013 Oct 4;12(10):4607-11. doi: 10.1021/pr400316x. Epub 2013 Sep 12.
8
Defining, comparing, and improving iTRAQ quantification in mass spectrometry proteomics data.
Mol Cell Proteomics. 2013 Jul;12(7):2021-31. doi: 10.1074/mcp.M112.021592. Epub 2013 Mar 7.
9
Protein analysis by shotgun/bottom-up proteomics.
Chem Rev. 2013 Apr 10;113(4):2343-94. doi: 10.1021/cr3003533. Epub 2013 Feb 26.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
4
5
Shotgun proteomics using the iTRAQ isobaric tags.
Brief Funct Genomic Proteomic. 2006 Jun;5(2):112-20. doi: 10.1093/bfgp/ell018. Epub 2006 May 10.
6
Mass spectrometry and protein analysis.
Science. 2006 Apr 14;312(5771):212-7. doi: 10.1126/science.1124619.
8
Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap.
Mol Cell Proteomics. 2005 Dec;4(12):2010-21. doi: 10.1074/mcp.T500030-MCP200. Epub 2005 Oct 24.
9
i-Tracker: for quantitative proteomics using iTRAQ.
BMC Genomics. 2005 Oct 20;6:145. doi: 10.1186/1471-2164-6-145.
10
The expanding role of mass spectrometry in metabolite profiling and characterization.
Chembiochem. 2005 Nov;6(11):1941-51. doi: 10.1002/cbic.200500151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验