Suppr超能文献

配体与处于开放状态的电压门控Kv1.5钾通道的结合——同源模型的对接与计算机模拟

Ligand binding to the voltage-gated Kv1.5 potassium channel in the open state--docking and computer simulations of a homology model.

作者信息

Andér Martin, Luzhkov Victor B, Aqvist Johan

机构信息

Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden.

出版信息

Biophys J. 2008 Feb 1;94(3):820-31. doi: 10.1529/biophysj.107.112045. Epub 2007 Sep 28.

Abstract

The binding of blockers to the human voltage-gated Kv1.5 potassium ion channel is investigated using a three-step procedure consisting of homology modeling, automated docking, and binding free energy calculations from molecular dynamics simulations, in combination with the linear interaction energy method. A reliable homology model of Kv1.5 is constructed using the recently published crystal structure of the Kv1.2 channel as a template. This model is expected to be significantly more accurate than earlier ones based on less similar templates. Using the three-dimensional homology model, a series of blockers with known affinities are docked into the cavity of the ion channel and their free energies of binding are calculated. The predicted binding free energies are in very good agreement with experimental data and the binding is predicted to be mainly achieved through nonpolar interactions, whereas the relatively small differences in the polar contribution determine the specificity. Apart from confirming the importance of residues V505, I508, V512, and V516 for ligand binding in the cavity, the results also show that A509 and P513 contribute significantly to the nonpolar binding interactions. Furthermore, we find that pharmacophore models based only on optimized free ligand conformations may not necessarily capture the geometric features of ligands bound to the channel cavity. The calculations herein give a detailed structural and energetic picture of blocker binding to Kv1.5 and this model should thus be useful for further ligand design efforts.

摘要

采用三步程序研究阻滞剂与人电压门控Kv1.5钾离子通道的结合,该程序包括同源建模、自动对接以及基于分子动力学模拟结合线性相互作用能方法的结合自由能计算。以最近发表的Kv1.2通道晶体结构为模板构建了可靠的Kv1.5同源模型。预计该模型比基于相似度较低模板的早期模型要准确得多。利用三维同源模型,将一系列具有已知亲和力的阻滞剂对接至离子通道腔中,并计算它们的结合自由能。预测的结合自由能与实验数据非常吻合,且预计结合主要通过非极性相互作用实现,而极性贡献的相对较小差异决定了特异性。除了证实残基V505、I508、V512和V516对腔内配体结合的重要性外,结果还表明A509和P513对非极性结合相互作用有显著贡献。此外,我们发现仅基于优化的游离配体构象的药效团模型不一定能捕捉到与通道腔结合的配体的几何特征。本文的计算给出了阻滞剂与Kv1.5结合的详细结构和能量图景,因此该模型应有助于进一步的配体设计工作。

相似文献

1
2
Dynamics and modulation studies of human voltage gated Kv1.5 channel.
J Biomol Struct Dyn. 2017 Feb;35(2):380-398. doi: 10.1080/07391102.2016.1144528. Epub 2016 Feb 24.
3
Modeling the binding modes of Kv1.5 potassium channel and blockers.
J Mol Graph Model. 2008 Sep;27(2):178-87. doi: 10.1016/j.jmgm.2008.04.002. Epub 2008 Apr 10.
7
Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel.
J Neuroimmune Pharmacol. 2017 Jun;12(2):260-276. doi: 10.1007/s11481-016-9710-9. Epub 2016 Sep 17.
8
A C-terminally amidated analogue of ShK is a potent and selective blocker of the voltage-gated potassium channel Kv1.3.
FEBS Lett. 2012 Nov 16;586(22):3996-4001. doi: 10.1016/j.febslet.2012.09.038. Epub 2012 Oct 9.
9
Molecular basis for Kv1.5 channel block: conservation of drug binding sites among voltage-gated K+ channels.
J Biol Chem. 2004 Jan 2;279(1):394-400. doi: 10.1074/jbc.M307411200. Epub 2003 Oct 25.
10
Identification of Verapamil Binding Sites Within Human Kv1.5 Channel Using Mutagenesis and Docking Simulation.
Cell Physiol Biochem. 2019;52(2):302-314. doi: 10.33594/000000022. Epub 2019 Feb 28.

引用本文的文献

3
5
Biobetters From an Integrated Computational/Experimental Approach.
Comput Struct Biotechnol J. 2017 Jan 16;15:138-145. doi: 10.1016/j.csbj.2017.01.003. eCollection 2017.
7
Symmetric kv1.5 blockers discovered by focused screening.
ACS Med Chem Lett. 2012 Aug 16;3(9):769-73. doi: 10.1021/ml3001787. eCollection 2012 Sep 13.
9
Interaction of local anesthetics with the K (+) channel pore domain: KcsA as a model for drug-dependent tetramer stability.
Channels (Austin). 2013 May-Jun;7(3):182-93. doi: 10.4161/chan.24455. Epub 2013 Apr 1.
10
Computational studies of marine toxins targeting ion channels.
Mar Drugs. 2013 Mar 13;11(3):848-69. doi: 10.3390/md11030848.

本文引用的文献

1
Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies.
J Chem Theory Comput. 2007 Nov;3(6):2162-75. doi: 10.1021/ct700106b.
3
Predicting absolute ligand binding free energies to a simple model site.
J Mol Biol. 2007 Aug 24;371(4):1118-34. doi: 10.1016/j.jmb.2007.06.002. Epub 2007 Jun 8.
4
Calculations of solute and solvent entropies from molecular dynamics simulations.
Phys Chem Chem Phys. 2006 Dec 14;8(46):5385-95. doi: 10.1039/b608486a. Epub 2006 Sep 8.
6
Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials.
Biophys J. 2006 Oct 15;91(8):2798-814. doi: 10.1529/biophysj.106.084301. Epub 2006 Jul 14.
7
Binding site of a novel Kv1.5 blocker: a "foot in the door" against atrial fibrillation.
Mol Pharmacol. 2006 Oct;70(4):1204-11. doi: 10.1124/mol.106.026203. Epub 2006 Jul 11.
8
Continuum solvation models in the linear interaction energy method.
J Phys Chem B. 2006 Jun 22;110(24):12034-41. doi: 10.1021/jp056929t.
9
Combining docking and molecular dynamic simulations in drug design.
Med Res Rev. 2006 Sep;26(5):531-68. doi: 10.1002/med.20067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验