Suppr超能文献

嗜热栖热菌2-脱氧-D-核糖-5-磷酸醛缩酶催化的顺序羟醛缩合反应

Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-d-ribose-5-phosphate aldolase.

作者信息

Sakuraba Haruhiko, Yoneda Kazunari, Yoshihara Kumiko, Satoh Kyoko, Kawakami Ryushi, Uto Yoshihiro, Tsuge Hideaki, Takahashi Katsuyuki, Hori Hitoshi, Ohshima Toshihisa

机构信息

Department of Life System, Institute of Technology and Science, University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.

出版信息

Appl Environ Microbiol. 2007 Nov;73(22):7427-34. doi: 10.1128/AEM.01101-07. Epub 2007 Sep 28.

Abstract

Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25 degrees C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25 degrees C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 A. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.

摘要

编码来自两种嗜热菌(嗜气栖热袍菌古菌和海栖热袍菌细菌)的2-脱氧-D-核糖-5-磷酸醛缩酶(DERA)同源物的基因分别在大肠杆菌中表达,之后对所产生酶的结构和活性进行了表征,并与大肠杆菌DERA的结构和活性进行了比较。令我们惊讶的是,尽管两种酶的2-脱氧-D-核糖-5-磷酸合成活性都低得多,但这两种嗜热DERA在低温(25摄氏度)下使用三个乙醛作为底物时,比大肠杆菌酶对顺序醛醇缩合的催化作用要强得多。这两种酶对高浓度乙醛都具有高度抗性,在25摄氏度下暴露于300 mM乙醛20小时后仍保留约50%的初始活性,而大肠杆菌DERA在相同条件下暴露2小时后几乎完全失活。通过X射线晶体学确定了嗜气栖热袍菌DERA的结构,分辨率为2.0 Å。嗜气栖热袍菌酶单体的主链坐标与海栖热袍菌和大肠杆菌酶的主链坐标非常相似,后两者的晶体结构已经解析。然而,嗜热酶的四级结构与大肠杆菌DERA的完全不同。嗜热酶二聚体中亚基-亚基界面的面积比大肠杆菌酶的大得多。这促进了独特二聚体结构的形成,并加强了亚基间的疏水相互作用。这些结构特征被认为是嗜热DERA具有极高稳定性的原因。

相似文献

1
Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-d-ribose-5-phosphate aldolase.
Appl Environ Microbiol. 2007 Nov;73(22):7427-34. doi: 10.1128/AEM.01101-07. Epub 2007 Sep 28.
4
First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.
Protein Expr Purif. 2016 Oct;126:62-68. doi: 10.1016/j.pep.2016.05.009. Epub 2016 May 20.
5
Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of ()-1,3-butanediol.
J Biol Chem. 2020 Jan 10;295(2):597-609. doi: 10.1074/jbc.RA119.011363. Epub 2019 Dec 5.
6
2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications.
Appl Microbiol Biotechnol. 2018 Dec;102(23):9959-9971. doi: 10.1007/s00253-018-9392-8. Epub 2018 Oct 3.
7
Probing the acetaldehyde-sensitivity of 2-deoxy-ribose-5-phosphate aldolase (DERA) leads to resistant variants.
J Biotechnol. 2017 Sep 20;258:56-58. doi: 10.1016/j.jbiotec.2017.03.024. Epub 2017 Mar 25.
9
Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis.
J Microbiol. 2016 Apr;54(4):311-21. doi: 10.1007/s12275-016-6029-4. Epub 2016 Apr 1.

引用本文的文献

1
Characterization of a widespread sugar phosphate-processing bacterial microcompartment.
Commun Biol. 2024 Nov 24;7(1):1562. doi: 10.1038/s42003-024-07287-y.
2
Protein quaternary structures in solution are a mixture of multiple forms.
Chem Sci. 2022 Sep 21;13(39):11680-11695. doi: 10.1039/d2sc02794a. eCollection 2022 Oct 12.
3
In Vitro One-Pot 3-Hydroxypropanal Production from Cheap C1 and C2 Compounds.
Int J Mol Sci. 2022 Apr 3;23(7):3990. doi: 10.3390/ijms23073990.
4
Encapsulins.
Annu Rev Biochem. 2022 Jun 21;91:353-380. doi: 10.1146/annurev-biochem-040320-102858. Epub 2022 Mar 18.
5
Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact.
Appl Microbiol Biotechnol. 2021 Aug;105(16-17):6215-6228. doi: 10.1007/s00253-021-11462-0. Epub 2021 Aug 19.
6
Large-scale computational discovery and analysis of virus-derived microbial nanocompartments.
Nat Commun. 2021 Aug 6;12(1):4748. doi: 10.1038/s41467-021-25071-y.
7
Cell-free synthetic biochemistry upgrading of ethanol to 1,3 butanediol.
Sci Rep. 2021 May 3;11(1):9449. doi: 10.1038/s41598-021-88899-w.
8
Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of ()-1,3-butanediol.
J Biol Chem. 2020 Jan 10;295(2):597-609. doi: 10.1074/jbc.RA119.011363. Epub 2019 Dec 5.
9
Aldolase-Catalyzed Asymmetric Synthesis of N-Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes.
Adv Synth Catal. 2019 Jun 6;361(11):2673-2687. doi: 10.1002/adsc.201801530. Epub 2019 Feb 15.
10
nanoDSF as screening tool for enzyme libraries and biotechnology development.
FEBS J. 2019 Jan;286(1):184-204. doi: 10.1111/febs.14696. Epub 2018 Dec 3.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
Biotechnol J. 2006 May;1(5):537-48. doi: 10.1002/biot.200600020.
4
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
6
SOLVE and RESOLVE: automated structure solution, density modification and model building.
J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):49-52. doi: 10.1107/s0909049503023938. Epub 2003 Nov 28.
10
Observation of covalent intermediates in an enzyme mechanism at atomic resolution.
Science. 2001 Oct 12;294(5541):369-74. doi: 10.1126/science.1063601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验